Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,833 Bytes
5f9d349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
# Reuse code taken from the implementation of atakan-topaloglu:
# https://github.com/atakan-topaloglu/vggt/blob/main/vggt_to_colmap.py
import os
import argparse
import numpy as np
import torch
import glob
import struct
from scipy.spatial.transform import Rotation
import sys
from PIL import Image
import cv2
import requests
import tempfile
sys.path.append("submodules/vggt/")
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
from vggt.utils.geometry import unproject_depth_map_to_point_map
def load_model(device=None):
"""Load and initialize the VGGT model."""
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
model = VGGT.from_pretrained("facebook/VGGT-1B")
# model = VGGT()
# _URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt"
# model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
model.eval()
model = model.to(device)
return model, device
def process_images(image_dir, model, device):
"""Process images with VGGT and return predictions."""
image_names = glob.glob(os.path.join(image_dir, "*"))
image_names = sorted([f for f in image_names if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
print(f"Found {len(image_names)} images")
if len(image_names) == 0:
raise ValueError(f"No images found in {image_dir}")
original_images = []
for img_path in image_names:
img = Image.open(img_path).convert('RGB')
original_images.append(np.array(img))
images = load_and_preprocess_images(image_names).to(device)
print(f"Preprocessed images shape: {images.shape}")
print("Running inference...")
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
predictions = model(images)
print("Converting pose encoding to camera parameters...")
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["pose_enc"], images.shape[-2:])
predictions["extrinsic"] = extrinsic
predictions["intrinsic"] = intrinsic
for key in predictions.keys():
if isinstance(predictions[key], torch.Tensor):
predictions[key] = predictions[key].cpu().numpy().squeeze(0) # remove batch dimension
print("Computing 3D points from depth maps...")
depth_map = predictions["depth"] # (S, H, W, 1)
world_points = unproject_depth_map_to_point_map(depth_map, predictions["extrinsic"], predictions["intrinsic"])
predictions["world_points_from_depth"] = world_points
predictions["original_images"] = original_images
S, H, W = world_points.shape[:3]
normalized_images = np.zeros((S, H, W, 3), dtype=np.float32)
for i, img in enumerate(original_images):
resized_img = cv2.resize(img, (W, H))
normalized_images[i] = resized_img / 255.0
predictions["images"] = normalized_images
return predictions, image_names
def extrinsic_to_colmap_format(extrinsics):
"""Convert extrinsic matrices to COLMAP format (quaternion + translation)."""
num_cameras = extrinsics.shape[0]
quaternions = []
translations = []
for i in range(num_cameras):
# VGGT's extrinsic is camera-to-world (R|t) format
R = extrinsics[i, :3, :3]
t = extrinsics[i, :3, 3]
# Convert rotation matrix to quaternion
# COLMAP quaternion format is [qw, qx, qy, qz]
rot = Rotation.from_matrix(R)
quat = rot.as_quat() # scipy returns [x, y, z, w]
quat = np.array([quat[3], quat[0], quat[1], quat[2]]) # Convert to [w, x, y, z]
quaternions.append(quat)
translations.append(t)
return np.array(quaternions), np.array(translations)
def download_file_from_url(url, filename):
"""Downloads a file from a URL, handling redirects."""
try:
response = requests.get(url, allow_redirects=False)
response.raise_for_status()
if response.status_code == 302:
redirect_url = response.headers["Location"]
response = requests.get(redirect_url, stream=True)
response.raise_for_status()
else:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(filename, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded {filename} successfully.")
return True
except requests.exceptions.RequestException as e:
print(f"Error downloading file: {e}")
return False
def segment_sky(image_path, onnx_session, mask_filename=None):
"""
Segments sky from an image using an ONNX model.
"""
image = cv2.imread(image_path)
result_map = run_skyseg(onnx_session, [320, 320], image)
result_map_original = cv2.resize(result_map, (image.shape[1], image.shape[0]))
# Fix: Invert the mask so that 255 = non-sky, 0 = sky
# The model outputs low values for sky, high values for non-sky
output_mask = np.zeros_like(result_map_original)
output_mask[result_map_original < 32] = 255 # Use threshold of 32
if mask_filename is not None:
os.makedirs(os.path.dirname(mask_filename), exist_ok=True)
cv2.imwrite(mask_filename, output_mask)
return output_mask
def run_skyseg(onnx_session, input_size, image):
"""
Runs sky segmentation inference using ONNX model.
"""
import copy
temp_image = copy.deepcopy(image)
resize_image = cv2.resize(temp_image, dsize=(input_size[0], input_size[1]))
x = cv2.cvtColor(resize_image, cv2.COLOR_BGR2RGB)
x = np.array(x, dtype=np.float32)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
x = (x / 255 - mean) / std
x = x.transpose(2, 0, 1)
x = x.reshape(-1, 3, input_size[0], input_size[1]).astype("float32")
input_name = onnx_session.get_inputs()[0].name
output_name = onnx_session.get_outputs()[0].name
onnx_result = onnx_session.run([output_name], {input_name: x})
onnx_result = np.array(onnx_result).squeeze()
min_value = np.min(onnx_result)
max_value = np.max(onnx_result)
onnx_result = (onnx_result - min_value) / (max_value - min_value)
onnx_result *= 255
onnx_result = onnx_result.astype("uint8")
return onnx_result
def filter_and_prepare_points(predictions, conf_threshold, mask_sky=False, mask_black_bg=False,
mask_white_bg=False, stride=1, prediction_mode="Depthmap and Camera Branch"):
"""
Filter points based on confidence and prepare for COLMAP format.
Implementation matches the conventions in the original VGGT code.
"""
if "Pointmap" in prediction_mode:
print("Using Pointmap Branch")
if "world_points" in predictions:
pred_world_points = predictions["world_points"]
pred_world_points_conf = predictions.get("world_points_conf", np.ones_like(pred_world_points[..., 0]))
else:
print("Warning: world_points not found in predictions, falling back to depth-based points")
pred_world_points = predictions["world_points_from_depth"]
pred_world_points_conf = predictions.get("depth_conf", np.ones_like(pred_world_points[..., 0]))
else:
print("Using Depthmap and Camera Branch")
pred_world_points = predictions["world_points_from_depth"]
pred_world_points_conf = predictions.get("depth_conf", np.ones_like(pred_world_points[..., 0]))
colors_rgb = predictions["images"]
S, H, W = pred_world_points.shape[:3]
if colors_rgb.shape[:3] != (S, H, W):
print(f"Reshaping colors_rgb from {colors_rgb.shape} to match {(S, H, W, 3)}")
reshaped_colors = np.zeros((S, H, W, 3), dtype=np.float32)
for i in range(S):
if i < len(colors_rgb):
reshaped_colors[i] = cv2.resize(colors_rgb[i], (W, H))
colors_rgb = reshaped_colors
colors_rgb = (colors_rgb * 255).astype(np.uint8)
if mask_sky:
print("Applying sky segmentation mask")
try:
import onnxruntime
with tempfile.TemporaryDirectory() as temp_dir:
print(f"Created temporary directory for sky segmentation: {temp_dir}")
temp_images_dir = os.path.join(temp_dir, "images")
sky_masks_dir = os.path.join(temp_dir, "sky_masks")
os.makedirs(temp_images_dir, exist_ok=True)
os.makedirs(sky_masks_dir, exist_ok=True)
image_list = []
for i, img in enumerate(colors_rgb):
img_path = os.path.join(temp_images_dir, f"image_{i:04d}.png")
image_list.append(img_path)
cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
skyseg_path = os.path.join(temp_dir, "skyseg.onnx")
if not os.path.exists("skyseg.onnx"):
print("Downloading skyseg.onnx...")
download_success = download_file_from_url(
"https://huggingface.co/JianyuanWang/skyseg/resolve/main/skyseg.onnx",
skyseg_path
)
if not download_success:
print("Failed to download skyseg model, skipping sky filtering")
mask_sky = False
else:
import shutil
shutil.copy("skyseg.onnx", skyseg_path)
if mask_sky:
skyseg_session = onnxruntime.InferenceSession(skyseg_path)
sky_mask_list = []
for img_path in image_list:
mask_path = os.path.join(sky_masks_dir, os.path.basename(img_path))
sky_mask = segment_sky(img_path, skyseg_session, mask_path)
if sky_mask.shape[0] != H or sky_mask.shape[1] != W:
sky_mask = cv2.resize(sky_mask, (W, H))
sky_mask_list.append(sky_mask)
sky_mask_array = np.array(sky_mask_list)
sky_mask_binary = (sky_mask_array > 0.1).astype(np.float32)
pred_world_points_conf = pred_world_points_conf * sky_mask_binary
print(f"Applied sky mask, shape: {sky_mask_binary.shape}")
except (ImportError, Exception) as e:
print(f"Error in sky segmentation: {e}")
mask_sky = False
vertices_3d = pred_world_points.reshape(-1, 3)
conf = pred_world_points_conf.reshape(-1)
colors_rgb_flat = colors_rgb.reshape(-1, 3)
if len(conf) != len(colors_rgb_flat):
print(f"WARNING: Shape mismatch between confidence ({len(conf)}) and colors ({len(colors_rgb_flat)})")
min_size = min(len(conf), len(colors_rgb_flat))
conf = conf[:min_size]
vertices_3d = vertices_3d[:min_size]
colors_rgb_flat = colors_rgb_flat[:min_size]
if conf_threshold == 0.0:
conf_thres_value = 0.0
else:
conf_thres_value = np.percentile(conf, conf_threshold)
print(f"Using confidence threshold: {conf_threshold}% (value: {conf_thres_value:.4f})")
conf_mask = (conf >= conf_thres_value) & (conf > 1e-5)
if mask_black_bg:
print("Filtering black background")
black_bg_mask = colors_rgb_flat.sum(axis=1) >= 16
conf_mask = conf_mask & black_bg_mask
if mask_white_bg:
print("Filtering white background")
white_bg_mask = ~((colors_rgb_flat[:, 0] > 240) & (colors_rgb_flat[:, 1] > 240) & (colors_rgb_flat[:, 2] > 240))
conf_mask = conf_mask & white_bg_mask
filtered_vertices = vertices_3d[conf_mask]
filtered_colors = colors_rgb_flat[conf_mask]
if len(filtered_vertices) == 0:
print("Warning: No points remaining after filtering. Using default point.")
filtered_vertices = np.array([[0, 0, 0]])
filtered_colors = np.array([[200, 200, 200]])
print(f"Filtered to {len(filtered_vertices)} points")
points3D = []
point_indices = {}
image_points2D = [[] for _ in range(len(pred_world_points))]
print(f"Preparing points for COLMAP format with stride {stride}...")
total_points = 0
for img_idx in range(S):
for y in range(0, H, stride):
for x in range(0, W, stride):
flat_idx = img_idx * H * W + y * W + x
if flat_idx >= len(conf):
continue
if conf[flat_idx] < conf_thres_value or conf[flat_idx] <= 1e-5:
continue
if mask_black_bg and colors_rgb_flat[flat_idx].sum() < 16:
continue
if mask_white_bg and all(colors_rgb_flat[flat_idx] > 240):
continue
point3D = vertices_3d[flat_idx]
rgb = colors_rgb_flat[flat_idx]
if not np.all(np.isfinite(point3D)):
continue
point_hash = hash_point(point3D, scale=100)
if point_hash not in point_indices:
point_idx = len(points3D)
point_indices[point_hash] = point_idx
point_entry = {
"id": point_idx,
"xyz": point3D,
"rgb": rgb,
"error": 1.0,
"track": [(img_idx, len(image_points2D[img_idx]))]
}
points3D.append(point_entry)
total_points += 1
else:
point_idx = point_indices[point_hash]
points3D[point_idx]["track"].append((img_idx, len(image_points2D[img_idx])))
image_points2D[img_idx].append((x, y, point_indices[point_hash]))
print(f"Prepared {len(points3D)} 3D points with {sum(len(pts) for pts in image_points2D)} observations for COLMAP")
return points3D, image_points2D
def hash_point(point, scale=100):
"""Create a hash for a 3D point by quantizing coordinates."""
quantized = tuple(np.round(point * scale).astype(int))
return hash(quantized)
def write_colmap_cameras_txt(file_path, intrinsics, image_width, image_height):
"""Write camera intrinsics to COLMAP cameras.txt format."""
with open(file_path, 'w') as f:
f.write("# Camera list with one line of data per camera:\n")
f.write("# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n")
f.write(f"# Number of cameras: {len(intrinsics)}\n")
for i, intrinsic in enumerate(intrinsics):
camera_id = i + 1 # COLMAP uses 1-indexed camera IDs
model = "PINHOLE"
fx = intrinsic[0, 0]
fy = intrinsic[1, 1]
cx = intrinsic[0, 2]
cy = intrinsic[1, 2]
f.write(f"{camera_id} {model} {image_width} {image_height} {fx} {fy} {cx} {cy}\n")
def write_colmap_images_txt(file_path, quaternions, translations, image_points2D, image_names):
"""Write camera poses and keypoints to COLMAP images.txt format."""
with open(file_path, 'w') as f:
f.write("# Image list with two lines of data per image:\n")
f.write("# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n")
f.write("# POINTS2D[] as (X, Y, POINT3D_ID)\n")
num_points = sum(len(points) for points in image_points2D)
avg_points = num_points / len(image_points2D) if image_points2D else 0
f.write(f"# Number of images: {len(quaternions)}, mean observations per image: {avg_points:.1f}\n")
for i in range(len(quaternions)):
image_id = i + 1
camera_id = i + 1
qw, qx, qy, qz = quaternions[i]
tx, ty, tz = translations[i]
f.write(f"{image_id} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {camera_id} {os.path.basename(image_names[i])}\n")
points_line = " ".join([f"{x} {y} {point3d_id+1}" for x, y, point3d_id in image_points2D[i]])
f.write(f"{points_line}\n")
def write_colmap_points3D_txt(file_path, points3D):
"""Write 3D points and tracks to COLMAP points3D.txt format."""
with open(file_path, 'w') as f:
f.write("# 3D point list with one line of data per point:\n")
f.write("# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n")
avg_track_length = sum(len(point["track"]) for point in points3D) / len(points3D) if points3D else 0
f.write(f"# Number of points: {len(points3D)}, mean track length: {avg_track_length:.4f}\n")
for point in points3D:
point_id = point["id"] + 1
x, y, z = point["xyz"]
r, g, b = point["rgb"]
error = point["error"]
track = " ".join([f"{img_id+1} {point2d_idx}" for img_id, point2d_idx in point["track"]])
f.write(f"{point_id} {x} {y} {z} {int(r)} {int(g)} {int(b)} {error} {track}\n")
def write_colmap_cameras_bin(file_path, intrinsics, image_width, image_height):
"""Write camera intrinsics to COLMAP cameras.bin format."""
with open(file_path, 'wb') as fid:
# Write number of cameras (uint64)
fid.write(struct.pack('<Q', len(intrinsics)))
for i, intrinsic in enumerate(intrinsics):
camera_id = i + 1
model_id = 1
fx = float(intrinsic[0, 0])
fy = float(intrinsic[1, 1])
cx = float(intrinsic[0, 2])
cy = float(intrinsic[1, 2])
# Camera ID (uint32)
fid.write(struct.pack('<I', camera_id))
# Model ID (uint32)
fid.write(struct.pack('<I', model_id))
# Width (uint64)
fid.write(struct.pack('<Q', image_width))
# Height (uint64)
fid.write(struct.pack('<Q', image_height))
# Parameters (double)
fid.write(struct.pack('<dddd', fx, fy, cx, cy))
def write_colmap_images_bin(file_path, quaternions, translations, image_points2D, image_names):
"""Write camera poses and keypoints to COLMAP images.bin format."""
with open(file_path, 'wb') as fid:
# Write number of images (uint64)
fid.write(struct.pack('<Q', len(quaternions)))
for i in range(len(quaternions)):
image_id = i + 1
camera_id = i + 1
qw, qx, qy, qz = quaternions[i].astype(float)
tx, ty, tz = translations[i].astype(float)
image_name = os.path.basename(image_names[i]).encode()
points = image_points2D[i]
# Image ID (uint32)
fid.write(struct.pack('<I', image_id))
# Quaternion (double): qw, qx, qy, qz
fid.write(struct.pack('<dddd', qw, qx, qy, qz))
# Translation (double): tx, ty, tz
fid.write(struct.pack('<ddd', tx, ty, tz))
# Camera ID (uint32)
fid.write(struct.pack('<I', camera_id))
# Image name
fid.write(struct.pack('<I', len(image_name)))
fid.write(image_name)
# Write number of 2D points (uint64)
fid.write(struct.pack('<Q', len(points)))
# Write 2D points: x, y, point3D_id
for x, y, point3d_id in points:
fid.write(struct.pack('<dd', float(x), float(y)))
fid.write(struct.pack('<Q', point3d_id + 1))
def write_colmap_points3D_bin(file_path, points3D):
"""Write 3D points and tracks to COLMAP points3D.bin format."""
with open(file_path, 'wb') as fid:
# Write number of points (uint64)
fid.write(struct.pack('<Q', len(points3D)))
for point in points3D:
point_id = point["id"] + 1
x, y, z = point["xyz"].astype(float)
r, g, b = point["rgb"].astype(np.uint8)
error = float(point["error"])
track = point["track"]
# Point ID (uint64)
fid.write(struct.pack('<Q', point_id))
# Position (double): x, y, z
fid.write(struct.pack('<ddd', x, y, z))
# Color (uint8): r, g, b
fid.write(struct.pack('<BBB', int(r), int(g), int(b)))
# Error (double)
fid.write(struct.pack('<d', error))
# Track: list of (image_id, point2D_idx)
fid.write(struct.pack('<Q', len(track)))
for img_id, point2d_idx in track:
fid.write(struct.pack('<II', img_id + 1, point2d_idx))
def main():
parser = argparse.ArgumentParser(description="Convert images to COLMAP format using VGGT")
parser.add_argument("--image_dir", type=str, required=True,
help="Directory containing input images")
parser.add_argument("--output_dir", type=str, default="colmap_output",
help="Directory to save COLMAP files")
parser.add_argument("--conf_threshold", type=float, default=50.0,
help="Confidence threshold (0-100%) for including points")
parser.add_argument("--mask_sky", action="store_true",
help="Filter out points likely to be sky")
parser.add_argument("--mask_black_bg", action="store_true",
help="Filter out points with very dark/black color")
parser.add_argument("--mask_white_bg", action="store_true",
help="Filter out points with very bright/white color")
parser.add_argument("--binary", action="store_true",
help="Output binary COLMAP files instead of text")
parser.add_argument("--stride", type=int, default=1,
help="Stride for point sampling (higher = fewer points)")
parser.add_argument("--prediction_mode", type=str, default="Depthmap and Camera Branch",
choices=["Depthmap and Camera Branch", "Pointmap Branch"],
help="Which prediction branch to use")
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
model, device = load_model()
predictions, image_names = process_images(args.image_dir, model, device)
print("Converting camera parameters to COLMAP format...")
quaternions, translations = extrinsic_to_colmap_format(predictions["extrinsic"])
print(f"Filtering points with confidence threshold {args.conf_threshold}% and stride {args.stride}...")
points3D, image_points2D = filter_and_prepare_points(
predictions,
args.conf_threshold,
mask_sky=args.mask_sky,
mask_black_bg=args.mask_black_bg,
mask_white_bg=args.mask_white_bg,
stride=args.stride,
prediction_mode=args.prediction_mode
)
height, width = predictions["depth"].shape[1:3]
print(f"Writing {'binary' if args.binary else 'text'} COLMAP files to {args.output_dir}...")
if args.binary:
write_colmap_cameras_bin(
os.path.join(args.output_dir, "cameras.bin"),
predictions["intrinsic"], width, height)
write_colmap_images_bin(
os.path.join(args.output_dir, "images.bin"),
quaternions, translations, image_points2D, image_names)
write_colmap_points3D_bin(
os.path.join(args.output_dir, "points3D.bin"),
points3D)
else:
write_colmap_cameras_txt(
os.path.join(args.output_dir, "cameras.txt"),
predictions["intrinsic"], width, height)
write_colmap_images_txt(
os.path.join(args.output_dir, "images.txt"),
quaternions, translations, image_points2D, image_names)
write_colmap_points3D_txt(
os.path.join(args.output_dir, "points3D.txt"),
points3D)
print(f"COLMAP files successfully written to {args.output_dir}")
if __name__ == "__main__":
main() |