Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,023 Bytes
5f9d349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import torch
from random import randint
from tqdm.rich import trange
from tqdm import tqdm as tqdm
from source.networks import Warper3DGS
import wandb
import sys
sys.path.append('./submodules/gaussian-splatting/')
import lpips
from source.losses import ssim, l1_loss, psnr
from rich.console import Console
from rich.theme import Theme
custom_theme = Theme({
"info": "dim cyan",
"warning": "magenta",
"danger": "bold red"
})
#from source.corr_init import init_gaussians_with_corr
from source.corr_init_new import init_gaussians_with_corr_profiled as init_gaussians_with_corr
from source.utils_aux import log_samples
from source.timer import Timer
class EDGSTrainer:
def __init__(self,
GS: Warper3DGS,
training_config,
dataset_white_background=False,
device=torch.device('cuda'),
log_wandb=True,
):
self.GS = GS
self.scene = GS.scene
self.viewpoint_stack = GS.viewpoint_stack
self.gaussians = GS.gaussians
self.training_config = training_config
self.GS_optimizer = GS.gaussians.optimizer
self.dataset_white_background = dataset_white_background
self.training_step = 1
self.gs_step = 0
self.CONSOLE = Console(width=120, theme=custom_theme)
self.saving_iterations = training_config.save_iterations
self.evaluate_iterations = None
self.batch_size = training_config.batch_size
self.ema_loss_for_log = 0.0
# Logs in the format {step:{"loss1":loss1_value, "loss2":loss2_value}}
self.logs_losses = {}
self.lpips = lpips.LPIPS(net='vgg').to(device)
self.device = device
self.timer = Timer()
self.log_wandb = log_wandb
def load_checkpoints(self, load_cfg):
# Load 3DGS checkpoint
if load_cfg.gs:
self.gs.gaussians.restore(
torch.load(f"{load_cfg.gs}/chkpnt{load_cfg.gs_step}.pth")[0],
self.training_config)
self.GS_optimizer = self.GS.gaussians.optimizer
self.CONSOLE.print(f"3DGS loaded from checkpoint for iteration {load_cfg.gs_step}",
style="info")
self.training_step += load_cfg.gs_step
self.gs_step += load_cfg.gs_step
def train(self, train_cfg):
# 3DGS training
self.CONSOLE.print("Train 3DGS for {} iterations".format(train_cfg.gs_epochs), style="info")
with trange(self.training_step, self.training_step + train_cfg.gs_epochs, desc="[green]Train gaussians") as progress_bar:
for self.training_step in progress_bar:
radii = self.train_step_gs(max_lr=train_cfg.max_lr, no_densify=train_cfg.no_densify)
with torch.no_grad():
if train_cfg.no_densify:
self.prune(radii)
else:
self.densify_and_prune(radii)
if train_cfg.reduce_opacity:
# Slightly reduce opacity every few steps:
if self.gs_step < self.training_config.densify_until_iter and self.gs_step % 10 == 0:
opacities_new = torch.log(torch.exp(self.GS.gaussians._opacity.data) * 0.99)
self.GS.gaussians._opacity.data = opacities_new
self.timer.pause()
# Progress bar
if self.training_step % 10 == 0:
progress_bar.set_postfix({"[red]Loss": f"{self.ema_loss_for_log:.{7}f}"}, refresh=True)
# Log and save
if self.training_step in self.saving_iterations:
self.save_model()
if self.evaluate_iterations is not None:
if self.training_step in self.evaluate_iterations:
self.evaluate()
else:
if (self.training_step <= 3000 and self.training_step % 500 == 0) or \
(self.training_step > 3000 and self.training_step % 1000 == 228) :
self.evaluate()
self.timer.start()
def evaluate(self):
torch.cuda.empty_cache()
log_gen_images, log_real_images = [], []
validation_configs = ({'name': 'test', 'cameras': self.scene.getTestCameras(), 'cam_idx': self.training_config.TEST_CAM_IDX_TO_LOG},
{'name': 'train',
'cameras': [self.scene.getTrainCameras()[idx % len(self.scene.getTrainCameras())] for idx in
range(0, 150, 5)], 'cam_idx': 10})
if self.log_wandb:
wandb.log({f"Number of Gaussians": len(self.GS.gaussians._xyz)}, step=self.training_step)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
ssim_test = 0.0
lpips_splat_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(self.GS(viewpoint)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to(self.device), 0.0, 1.0)
l1_test += l1_loss(image, gt_image).double()
psnr_test += psnr(image.unsqueeze(0), gt_image.unsqueeze(0)).double()
ssim_test += ssim(image, gt_image).double()
lpips_splat_test += self.lpips(image, gt_image).detach().double()
if idx in [config['cam_idx']]:
log_gen_images.append(image)
log_real_images.append(gt_image)
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
lpips_splat_test /= len(config['cameras'])
if self.log_wandb:
wandb.log({f"{config['name']}/L1": l1_test.item(), f"{config['name']}/PSNR": psnr_test.item(), \
f"{config['name']}/SSIM": ssim_test.item(), f"{config['name']}/LPIPS_splat": lpips_splat_test.item()}, step = self.training_step)
self.CONSOLE.print("\n[ITER {}], #{} gaussians, Evaluating {}: L1={:.6f}, PSNR={:.6f}, SSIM={:.6f}, LPIPS_splat={:.6f} ".format(
self.training_step, len(self.GS.gaussians._xyz), config['name'], l1_test.item(), psnr_test.item(), ssim_test.item(), lpips_splat_test.item()), style="info")
if self.log_wandb:
with torch.no_grad():
log_samples(torch.stack((log_real_images[0],log_gen_images[0])) , [], self.training_step, caption="Real and Generated Samples")
wandb.log({"time": self.timer.get_elapsed_time()}, step=self.training_step)
torch.cuda.empty_cache()
def train_step_gs(self, max_lr = False, no_densify = False):
self.gs_step += 1
if max_lr:
self.GS.gaussians.update_learning_rate(max(self.gs_step, 8_000))
else:
self.GS.gaussians.update_learning_rate(self.gs_step)
# Every 1000 its we increase the levels of SH up to a maximum degree
if self.gs_step % 1000 == 0:
self.GS.gaussians.oneupSHdegree()
# Pick a random Camera
if not self.viewpoint_stack:
self.viewpoint_stack = self.scene.getTrainCameras().copy()
viewpoint_cam = self.viewpoint_stack.pop(randint(0, len(self.viewpoint_stack) - 1))
render_pkg = self.GS(viewpoint_cam=viewpoint_cam)
image = render_pkg["render"]
# Loss
gt_image = viewpoint_cam.original_image.to(self.device)
L1_loss = l1_loss(image, gt_image)
ssim_loss = (1.0 - ssim(image, gt_image))
loss = (1.0 - self.training_config.lambda_dssim) * L1_loss + \
self.training_config.lambda_dssim * ssim_loss
self.timer.pause()
self.logs_losses[self.training_step] = {"loss": loss.item(),
"L1_loss": L1_loss.item(),
"ssim_loss": ssim_loss.item()}
if self.log_wandb:
for k, v in self.logs_losses[self.training_step].items():
wandb.log({f"train/{k}": v}, step=self.training_step)
self.ema_loss_for_log = 0.4 * self.logs_losses[self.training_step]["loss"] + 0.6 * self.ema_loss_for_log
self.timer.start()
self.GS_optimizer.zero_grad(set_to_none=True)
loss.backward()
with torch.no_grad():
if self.gs_step < self.training_config.densify_until_iter and not no_densify:
self.GS.gaussians.max_radii2D[render_pkg["visibility_filter"]] = torch.max(
self.GS.gaussians.max_radii2D[render_pkg["visibility_filter"]],
render_pkg["radii"][render_pkg["visibility_filter"]])
self.GS.gaussians.add_densification_stats(render_pkg["viewspace_points"],
render_pkg["visibility_filter"])
# Optimizer step
self.GS_optimizer.step()
self.GS_optimizer.zero_grad(set_to_none=True)
return render_pkg["radii"]
def densify_and_prune(self, radii = None):
# Densification or pruning
if self.gs_step < self.training_config.densify_until_iter:
if (self.gs_step > self.training_config.densify_from_iter) and \
(self.gs_step % self.training_config.densification_interval == 0):
size_threshold = 20 if self.gs_step > self.training_config.opacity_reset_interval else None
self.GS.gaussians.densify_and_prune(self.training_config.densify_grad_threshold,
0.005,
self.GS.scene.cameras_extent,
size_threshold, radii)
if self.gs_step % self.training_config.opacity_reset_interval == 0 or (
self.dataset_white_background and self.gs_step == self.training_config.densify_from_iter):
self.GS.gaussians.reset_opacity()
def save_model(self):
print("\n[ITER {}] Saving Gaussians".format(self.gs_step))
self.scene.save(self.gs_step)
print("\n[ITER {}] Saving Checkpoint".format(self.gs_step))
torch.save((self.GS.gaussians.capture(), self.gs_step),
self.scene.model_path + "/chkpnt" + str(self.gs_step) + ".pth")
def init_with_corr(self, cfg, verbose=False, roma_model=None):
"""
Initializes image with matchings. Also removes SfM init points.
Args:
cfg: configuration part named init_wC. Check train.yaml
verbose: whether you want to print intermediate results. Useful for debug.
roma_model: optionally you can pass here preinit RoMA model to avoid reinit
it every time.
"""
if not cfg.use:
return None
N_splats_at_init = len(self.GS.gaussians._xyz)
print("N_splats_at_init:", N_splats_at_init)
camera_set, selected_indices, visualization_dict = init_gaussians_with_corr(
self.GS.gaussians,
self.scene,
cfg,
self.device,
verbose=verbose,
roma_model=roma_model)
# Remove SfM points and leave only matchings inits
if not cfg.add_SfM_init:
with torch.no_grad():
N_splats_after_init = len(self.GS.gaussians._xyz)
print("N_splats_after_init:", N_splats_after_init)
self.gaussians.tmp_radii = torch.zeros(self.gaussians._xyz.shape[0]).to(self.device)
mask = torch.concat([torch.ones(N_splats_at_init, dtype=torch.bool),
torch.zeros(N_splats_after_init-N_splats_at_init, dtype=torch.bool)],
axis=0)
self.GS.gaussians.prune_points(mask)
with torch.no_grad():
gaussians = self.gaussians
gaussians._scaling = gaussians.scaling_inverse_activation(gaussians.scaling_activation(gaussians._scaling)*0.5)
return visualization_dict
def prune(self, radii, min_opacity=0.005):
self.GS.gaussians.tmp_radii = radii
if self.gs_step < self.training_config.densify_until_iter:
prune_mask = (self.GS.gaussians.get_opacity < min_opacity).squeeze()
self.GS.gaussians.prune_points(prune_mask)
torch.cuda.empty_cache()
self.GS.gaussians.tmp_radii = None
|