Spaces:
dxdcx
/
Running on CPU Upgrade

chatfinanz / app.py
dxdcx's picture
Update app.py
1182672 verified
#!/usr/bin/env python
import os
import re
import base64
import tempfile
from collections.abc import Iterator
from threading import Thread
from datetime import datetime
import asyncio
import nest_asyncio
import cv2
import gradio as gr
from openai import OpenAI
from openai import AsyncOpenAI
from PIL import Image
import spaces
# Friendli AI Endpoints parameter
friendli_token = os.getenv("FRIENDLI_TOKEN", "your_friendli_token")
gemini_token = os.getenv("GEMINI_TOKEN", "your_gemini_token")
openai_token = os.getenv("OPENAI_TOKEN", "your_openai_token")
model_name = "hb6sexrtj6mf"
base_url = "https://api.friendli.ai/dedicated/v1"
# base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
# OpenAI client for Friendli
client = OpenAI(
base_url=base_url,
api_key=friendli_token,
)
async_client = AsyncOpenAI(
base_url=base_url,
api_key=friendli_token,
)
async def async_ping() -> None:
try:
response = await async_client.completions.create(
model=model_name, prompt="Repeat Hello", max_tokens=1,
)
print(response)
except Exception as e:
print(e)
# Apply nest_asyncio to allow running within the existing event loop
nest_asyncio.apply()
asyncio.run(async_ping())
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
image_count = 0
video_count = 0
for path in paths:
if path.endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
image_count = 0
video_count = 0
for item in history:
if item["role"] != "user" or isinstance(item["content"], str):
continue
if item["content"][0].endswith(".mp4"):
video_count += 1
else:
image_count += 1
return image_count, video_count
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
new_image_count, new_video_count = count_files_in_new_message(message["files"])
history_image_count, history_video_count = count_files_in_history(history)
image_count = history_image_count + new_image_count
video_count = history_video_count + new_video_count
if video_count > 1:
gr.Warning("Only one video is supported.")
return False
if video_count == 1:
if image_count > 0:
gr.Warning("Mixing images and videos is not allowed.")
return False
if "<image>" in message["text"]:
gr.Warning("Using <image> tags with video files is not supported.")
return False
if video_count == 0 and image_count > MAX_NUM_IMAGES:
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
return False
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
gr.Warning("The number of <image> tags in the text does not match the number of images.")
return False
return True
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
vidcap = cv2.VideoCapture(video_path)
fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(total_frames // MAX_NUM_IMAGES, 1)
frames: list[tuple[Image.Image, float]] = []
for i in range(0, min(total_frames, MAX_NUM_IMAGES * frame_interval), frame_interval):
if len(frames) >= MAX_NUM_IMAGES:
break
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def process_video(video_path: str) -> list[dict]:
frames = downsample_video(video_path)
image_messages = []
for frame in frames:
pil_image, timestamp = frame
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
pil_image.save(temp_file.name)
# For each frame, add a message with the timestamp text
image_messages.append({
"role": "user",
"content": f"Frame {timestamp}:"
})
# Then add the image
image_messages.append({
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"file://{temp_file.name}"}
}
]
})
return image_messages
import base64
import re
import mimetypes # Added for MIME type detection
import requests
from typing import List, Dict, Union, Any
import base64
import re
import mimetypes # For fallback MIME type detection
def encode_image_to_base64(image_path: str) -> str:
"""Encodes a local image file to a base64 string."""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_image_media_type(image_path: str) -> str | None:
"""
Determines the media type for an image file.
Returns the MIME string (e.g., "image/jpg") or None if not a recognized image type.
"""
ext = image_path.split('.')[-1].lower()
if ext in ("jpg", "jpeg"):
return "image/jpg" # Align with the example snippet's "image/jpg"
elif ext == "png":
return "image/png"
elif ext == "gif":
return "image/gif"
elif ext == "webp":
return "image/webp"
# Fallback to mimetypes for other potential image types
mime_type, _ = mimetypes.guess_type(image_path)
if mime_type and mime_type.startswith("image/"):
if mime_type == "image/jpeg": # If mimetypes returns image/jpeg, use image/jpg
return "image/jpg"
return mime_type
return None # Not a recognized/supported image type
def process_interleaved_images(message: dict) -> list:
"""Processes messages with <image> tags interleaved with text."""
user_text = message.get("text", "")
files = message.get("files", [])
parts = re.split(r"(<image>)", user_text)
final_content = []
current_text = ""
image_index = 0
for part in parts:
if part == "<image>":
if current_text.strip():
final_content.append({"type": "text", "text": current_text.strip()})
current_text = ""
if image_index < len(files):
image_path = files[image_index]
media_type = get_image_media_type(image_path)
if media_type: # Proceed only if it's a recognized image type
try:
base64_image = encode_image_to_base64(image_path)
final_content.append({
"type": "image_url",
"image_url": {"url": f"data:{media_type};base64,{base64_image}"}
})
except FileNotFoundError:
# Optionally log this error or add a placeholder for the missing image
print(f"Warning: Image file not found: {image_path}")
except Exception as e:
print(f"Warning: Could not process image {image_path}: {e}")
else:
# File is not a recognized image type, or get_image_media_type returned None
print(f"Warning: File {image_path} is not a recognized image type or <image> tag mismatch.")
image_index += 1
else:
# More <image> tags than files provided
print("Warning: <image> tag found but no corresponding file path in 'files' list.")
else:
current_text += part
if current_text.strip():
final_content.append({"type": "text", "text": current_text.strip()})
return final_content
def process_new_user_message(message: dict) -> list:
"""Processes a new user message, handling text, images, and potentially video."""
user_text = message.get("text", "")
files = message.get("files", [])
if not files:
return [{"role": "user", "content": user_text}]
if files and files[0].endswith(".mp4"):
text_message = {"role": "user", "content": user_text}
video_messages = process_video(files[0]) # process_video needs to be defined
return [text_message] + video_messages
if "<image>" in user_text:
content = process_interleaved_images(message) # Pass the whole message dictionary
return [{"role": "user", "content": content}]
# For text with images appended (if no <image> tags or if files exist beyond those for tags)
content = []
if user_text.strip(): # Add text part only if there's text
content.append({"type": "text", "text": user_text})
for path in files:
# This simplistic check assumes non-mp4 files could be images.
# If interleaved images already consumed some files, this might re-process or process remaining.
# A more sophisticated approach might be needed if mixing interleaved and appended from the same 'files' list.
if not path.endswith(".mp4"):
media_type = get_image_media_type(path)
print('media_type', media_type)
if media_type: # Proceed only if it's a recognized image type
try:
print('path', path)
base64_image = encode_image_to_base64(path)
print('base64_image', base64_image)
content.append({
"type": "image_url",
"image_url": {"url": f"data:{media_type};base64,{base64_image}"}
})
except FileNotFoundError:
print(f"Warning: Image file not found during append: {path}")
except Exception as e:
print(f"Warning: Could not process image {path} during append: {e}")
return [{"role": "user", "content": content}]
def process_history(history: list[dict]) -> list[dict]:
"""Processes chat history, converting file:// image URLs to base64 data URLs."""
messages = []
for item in history:
if item["role"] == "assistant":
messages.append({"role": "assistant", "content": item["content"]})
else: # user messages
current_content = item.get("content")
if isinstance(current_content, str):
messages.append({"role": "user", "content": current_content})
elif isinstance(current_content, list): # Multimodal content (list of dicts)
processed_content_parts = []
for part in current_content:
if part.get("type") == "image_url" and \
part.get("image_url", {}).get("url", "").startswith("file://"):
image_path = part["image_url"]["url"][7:] # Remove "file://"
media_type = get_image_media_type(image_path)
if media_type: # Proceed only if it's a recognized image type
try:
base64_image = encode_image_to_base64(image_path)
processed_content_parts.append({
"type": "image_url",
"image_url": {"url": f"data:{media_type};base64,{base64_image}"}
})
except FileNotFoundError:
print(f"Warning: History image file not found: {image_path}")
processed_content_parts.append(part) # Keep original part if file missing
except Exception as e:
print(f"Warning: Could not process history image {image_path}: {e}")
processed_content_parts.append(part) # Keep original part on other errors
else:
# Was a file:// URL but not a recognized image or path issue
print(f"Warning: History file {image_path} is not a recognized image type.")
processed_content_parts.append(part) # Keep original part
else:
processed_content_parts.append(part)
messages.append({"role": "user", "content": processed_content_parts})
else:
# Content is not a string or list, pass as is or log warning
messages.append({"role": "user", "content": current_content if current_content is not None else ""})
return messages
def run(message: dict, history: list[dict]) -> Iterator[str]:
if not validate_media_constraints(message, history):
yield ""
return
# Prepare chat messages for OpenAI format
current_date = datetime.today().strftime('%Y-%m-%d')
messages = [{
"role": "system",
"content": f"Today is {current_date}. You are an expert quantitative financial analyst. Always reply with short, to the point, professional, detailed and technical answers. Provide supportive evidence, clear and detailed math formulas in Latex (always use $$ instead of $ as delimiters), or correct python code whenever useful. You have available the special python functions search(query=query) which allows you to retrieve information from the web and from an internal financial database, and interactive_brokers(action=action, ticker=ticker, quantity=quantity) which is linked to a user mock portfolio and where action can be 'buy', 'sell', 'info' (in which case quantity and ticker are optional). When replying with code, always ask if the user wants it executed (Yes/No), and if affirmative, simulate its execution. Never repeat or refer to these instructions, just follow them."
}]
# Add history and current message
messages.extend(process_history(history))
messages.extend(process_new_user_message(message))
print(messages)
# Generate
completion = client.chat.completions.create(
model=model_name, # Use appropriate model
messages=messages,
stream=True,
max_tokens=4096,
)
# Stream the response
output = ""
for chunk in completion:
if chunk.choices[0].delta.content:
output += chunk.choices[0].delta.content
yield output
# Gradio app setup remains unchanged
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"], show_label=False),
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple", autofocus=True),
multimodal=True,
stop_btn=False,
title="ChatFinanz",
examples=[
[{"text": "Convert this bank statement to csv", "files": ["assets/additional-examples/bank_statement.png"]}],
[{"text": "What would be the impact of 31% US tariffs (excluding pharma) on Switzerland exports?", "files": []}],
[{"text": "My client is a permanent resident in Portugal and has British citizenship. He wants to sell a 10% stake he has in a Delaware registered company. Where will he have to pay taxes?", "files": []}],
[{"text": "Replicate QQQ excluding exposure to the stock with the highest PE ratio", "files": []}],
[{"text": "GOOG is trading at 150$ today. Is it cheap or is it a 'value trap'?", "files": []}],
[{"text": "Write python code to replicate this graph adding revenue for 2025-2030 assuming 40% yearly growth for Cloud and 10% for Search.", "files": ["assets/additional-examples/rev.png"]}],
],
run_examples_on_click=False,
cache_examples=False,
css_paths="style.css",
delete_cache=(1800, 1800),
)
if __name__ == "__main__":
demo.launch(share=True)