""" CellVision AI - Intelligent Cell Imaging Analysis This module provides a Gradio web application for performing intelligent cell imaging analysis using the PaliGemma model from Google. The app allows users to segment or detect cells in images and generate descriptive text based on the input image and prompt. Dependencies: - gradio - transformers - torch - jax - flax - spaces - PIL - numpy - huggingface_hub """ import os import functools import re import PIL.Image import gradio as gr import numpy as np import torch import jax import jax.numpy as jnp import flax.linen as nn from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor from peft import PeftConfig, PeftModel from huggingface_hub import login import spaces # Perform login using the token hf_token = os.getenv("HF_TOKEN") login(token=hf_token, add_to_git_credential=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "google/paligemma-3b-pt-224" adapter_model_id = "dwb2023/paligemma-cnmc-ft" model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device) model = PeftModel.from_pretrained(model, adapter_model_id).to(device) model = model.merge_and_unload() model.save_pretrained("merged_adapters") processor = PaliGemmaProcessor.from_pretrained(model_id) @spaces.GPU def infer( image: PIL.Image.Image, text: str, max_new_tokens: int ) -> str: """ Perform inference using the PaliGemma model. Args: image (PIL.Image.Image): Input image. text (str): Input text prompt. max_new_tokens (int): Maximum number of new tokens to generate. Returns: str: Generated text based on the input image and prompt. """ inputs = processor(text=text, images=image, return_tensors="pt").to(device) with torch.inference_mode(): generated_ids = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=False ) result = processor.batch_decode(generated_ids, skip_special_tokens=True) return result[0][len(text):].lstrip("\n") def parse_segmentation(input_image, input_text): """ Parse segmentation output tokens into masks and bounding boxes. Args: input_image (PIL.Image.Image): Input image. input_text (str): Input text specifying entities to segment or detect. Returns: tuple: A tuple containing the annotated image and a boolean indicating if annotations are present. """ out = infer(input_image, input_text, max_new_tokens=100) objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True) labels = set(obj.get('name') for obj in objs if obj.get('name')) color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)} highlighted_text = [(obj['content'], obj.get('name')) for obj in objs] annotated_img = ( input_image, [ ( obj['mask'] if obj.get('mask') is not None else obj['xyxy'], obj['name'] or '', ) for obj in objs if 'mask' in obj or 'xyxy' in obj ], ) has_annotations = bool(annotated_img[1]) return annotated_img ### Postprocessing Utils for Segmentation Tokens _MODEL_PATH = 'vae-oid.npz' _SEGMENT_DETECT_RE = re.compile( r'(.*?)' + r'' * 4 + r'\s*' + '(?:%s)?' % (r'' * 16) + r'\s*([^;<>]+)? ?(?:; )?', ) COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1'] def _get_params(checkpoint): """ Convert PyTorch checkpoint to Flax params. Args: checkpoint (dict): PyTorch checkpoint dictionary. Returns: dict: Flax parameters. """ def transp(kernel): return np.transpose(kernel, (2, 3, 1, 0)) def conv(name): return { 'bias': checkpoint[name + '.bias'], 'kernel': transp(checkpoint[name + '.weight']), } def resblock(name): return { 'Conv_0': conv(name + '.0'), 'Conv_1': conv(name + '.2'), 'Conv_2': conv(name + '.4'), } return { '_embeddings': checkpoint['_vq_vae._embedding'], 'Conv_0': conv('decoder.0'), 'ResBlock_0': resblock('decoder.2.net'), 'ResBlock_1': resblock('decoder.3.net'), 'ConvTranspose_0': conv('decoder.4'), 'ConvTranspose_1': conv('decoder.6'), 'ConvTranspose_2': conv('decoder.8'), 'ConvTranspose_3': conv('decoder.10'), 'Conv_1': conv('decoder.12'), } def _quantized_values_from_codebook_indices(codebook_indices, embeddings): """ Get quantized values from codebook indices. Args: codebook_indices (jax.numpy.ndarray): Codebook indices. embeddings (jax.numpy.ndarray): Embeddings. Returns: jax.numpy.ndarray: Quantized values. """ batch_size, num_tokens = codebook_indices.shape assert num_tokens == 16, codebook_indices.shape unused_num_embeddings, embedding_dim = embeddings.shape encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) return encodings @functools.cache def _get_reconstruct_masks(): """ Reconstruct masks from codebook indices. Returns: function: A function that expects indices shaped `[B, 16]` of dtype int32, each ranging from 0 to 127 (inclusive), and returns decoded masks sized `[B, 64, 64, 1]`, of dtype float32, in range [-1, 1]. """ class ResBlock(nn.Module): features: int @nn.compact def __call__(self, x): original_x = x x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) x = nn.relu(x) x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) x = nn.relu(x) x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x) return x + original_x class Decoder(nn.Module): """Upscales quantized vectors to mask.""" @nn.compact def __call__(self, x): num_res_blocks = 2 dim = 128 num_upsample_layers = 4 x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x) x = nn.relu(x) for _ in range(num_res_blocks): x = ResBlock(features=dim)(x) for _ in range(num_upsample_layers): x = nn.ConvTranspose( features=dim, kernel_size=(4, 4), strides=(2, 2), padding=2, transpose_kernel=True, )(x) x = nn.relu(x) dim //= 2 x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x) return x def reconstruct_masks(codebook_indices): """ Reconstruct masks from codebook indices. Args: codebook_indices (jax.numpy.ndarray): Codebook indices. Returns: jax.numpy.ndarray: Reconstructed masks. """ quantized = _quantized_values_from_codebook_indices( codebook_indices, params['_embeddings'] ) return Decoder().apply({'params': params}, quantized) with open(_MODEL_PATH, 'rb') as f: params = _get_params(dict(np.load(f))) return jax.jit(reconstruct_masks, backend='cpu') def extract_objs(text, width, height, unique_labels=False): """ Extract objects from text containing "" and "" tokens. Args: text (str): Input text containing "" and "" tokens. width (int): Width of the image. height (int): Height of the image. unique_labels (bool, optional): Whether to enforce unique labels. Defaults to False. Returns: list: List of extracted objects. """ objs = [] seen = set() while text: m = _SEGMENT_DETECT_RE.match(text) if not m: break print("m", m) gs = list(m.groups()) before = gs.pop(0) name = gs.pop() y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) seg_indices = gs[4:20] if seg_indices[0] is None: mask = None else: seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) mask = np.zeros([height, width]) if y2 > y1 and x2 > x1: mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 content = m.group() if before: objs.append(dict(content=before)) content = content[len(before):] while unique_labels and name in seen: name = (name or '') + "'" seen.add(name) objs.append(dict( content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) text = text[len(before) + len(content):] if text: objs.append(dict(content=text)) return objs ######### INTRO_TEXT="# 🔬🧠 CellVision AI -- Intelligent Cell Imaging Analysis 🤖🧫" IMAGE_PROMPT=""" Describe the morphological characteristics and visible interactions between different cell types. Assess the biological context to identify signs of cancer and the presence of antigens. """ with gr.Blocks(css="style.css") as demo: gr.Markdown(INTRO_TEXT) with gr.Tab("Segment/Detect"): with gr.Row(): with gr.Column(): image = gr.Image(type="pil") seg_input = gr.Text(label="Entities to Segment/Detect") with gr.Column(): annotated_image = gr.AnnotatedImage(label="Output") seg_btn = gr.Button("Submit") examples = [["./examples/cnmc1.bmp", "segment cancerous cells"], ["./examples/cnmc1.bmp", "segment healthy cells"], ["./examples/cnmc1.bmp", "detect cancerous cells"], ["./examples/cnmc1.bmp", "detect healthy cells"], ["./examples/cnmc2.bmp", "segment cancerous cells"], ["./examples/cnmc2.bmp", "segment healthy cells"], ["./examples/cnmc2.bmp", "detect cancerous cells"], ["./examples/cnmc2.bmp", "detect healthy cells"], ["./examples/cnmc3.bmp", "segment cancerous cells"], ["./examples/cnmc3.bmp", "segment healthy cells"], ["./examples/cnmc3.bmp", "detect cancerous cells"], ["./examples/cnmc3.bmp", "detect healthy cells"], ["./examples/cnmc4.bmp", "segment cancerous cells"], ["./examples/cnmc4.bmp", "segment healthy cells"], ["./examples/cnmc4.bmp", "detect cancerous cells"], ["./examples/cnmc4.bmp", "detect healthy cells"], ["./examples/cnmc5.bmp", "segment cancerous cells"], ["./examples/cnmc5.bmp", "segment healthy cells"], ["./examples/cnmc5.bmp", "detect cancerous cells"], ["./examples/cnmc5.bmp", "detect healthy cells"], ["./examples/cnmc6.bmp", "segment cancerous cells"], ["./examples/cnmc6.bmp", "segment healthy cells"], ["./examples/cnmc6.bmp", "detect cancerous cells"], ["./examples/cnmc6.bmp", "detect healthy cells"], ["./examples/cnmc7.bmp", "segment cancerous cells"], ["./examples/cnmc7.bmp", "segment healthy cells"], ["./examples/cnmc7.bmp", "detect cancerous cells"], ["./examples/cnmc7.bmp", "detect healthy cells"], ["./examples/cnmc8.bmp", "segment cancerous cells"], ["./examples/cnmc8.bmp", "segment healthy cells"], ["./examples/cnmc8.bmp", "detect cancerous cells"], ["./examples/cnmc8.bmp", "detect healthy cells"], ["./examples/cnmc9.bmp", "segment cancerous cells"], ["./examples/cnmc9.bmp", "segment healthy cells"], ["./examples/cnmc9.bmp", "detect cancerous cells"], ["./examples/cnmc9.bmp", "detect healthy cells"], ["./examples/cart1.jpg", "segment cells"], ["./examples/cart1.jpg", "detect cells"], ["./examples/cart2.jpg", "segment cells"], ["./examples/cart2.jpg", "detect cells"], ["./examples/cart3.jpg", "segment cells"], ["./examples/cart3.jpg", "detect cells"]] gr.Examples( examples=examples, inputs=[image, seg_input], ) seg_inputs = [ image, seg_input ] seg_outputs = [ annotated_image ] seg_btn.click( fn=parse_segmentation, inputs=seg_inputs, outputs=seg_outputs, ) with gr.Tab("Text Generation"): with gr.Row(): with gr.Column(): image = gr.Image(type="pil") with gr.Column(): text_input = gr.Text(label="Input Text") text_output = gr.Text(label="Text Output") tokens = gr.Slider( label="Max New Tokens", info="Set to larger for longer generation.", minimum=10, maximum=100, value=50, step=10, ) chat_btn = gr.Button() chat_inputs = [ image, text_input, tokens ] chat_outputs = [ text_output ] chat_btn.click( fn=infer, inputs=chat_inputs, outputs=chat_outputs, ) examples = [["./examples/cnmc1.bmp", IMAGE_PROMPT], ["./examples/cnmc2.bmp", IMAGE_PROMPT], ["./examples/cnmc3.bmp", IMAGE_PROMPT], ["./examples/cnmc4.bmp", IMAGE_PROMPT], ["./examples/cnmc5.bmp", IMAGE_PROMPT], ["./examples/cnmc6.bmp", IMAGE_PROMPT], ["./examples/cnmc7.bmp", IMAGE_PROMPT], ["./examples/cnmc8.bmp", IMAGE_PROMPT], ["./examples/cnmc9.bmp", IMAGE_PROMPT], ["./examples/cart1.jpg", IMAGE_PROMPT], ["./examples/cart2.jpg", IMAGE_PROMPT], ["./examples/cart3.jpg", IMAGE_PROMPT]] gr.Examples( examples=examples, inputs=chat_inputs, ) ######### if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)