Spaces:
Runtime error
Runtime error
remove debug logging
Browse files
app.py
CHANGED
@@ -59,19 +59,13 @@ def detect_brain_tumor_owlv2(image, seg_input, debug: bool = True):
|
|
59 |
Returns:
|
60 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
61 |
"""
|
62 |
-
if debug:
|
63 |
-
logger.debug(f"Image received, shape: {image.shape}")
|
64 |
|
65 |
# Step 2: Detect brain tumor using owl_v2
|
66 |
prompt = "detect brain tumor"
|
67 |
detections = owl_v2(prompt, image)
|
68 |
-
if debug:
|
69 |
-
logger.debug(f"Raw detections: {detections}")
|
70 |
|
71 |
# Step 3: Overlay bounding boxes on the image
|
72 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
73 |
-
if debug:
|
74 |
-
logger.debug("Bounding boxes overlaid on the image")
|
75 |
|
76 |
# Prepare annotations for AnnotatedImage output
|
77 |
annotations = []
|
@@ -85,9 +79,6 @@ def detect_brain_tumor_owlv2(image, seg_input, debug: bool = True):
|
|
85 |
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
86 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
87 |
|
88 |
-
if debug:
|
89 |
-
logger.debug(f"Annotations: {annotations}")
|
90 |
-
|
91 |
# Convert image to numpy array if it's not already
|
92 |
if isinstance(image_with_bboxes, Image.Image):
|
93 |
image_with_bboxes = np.array(image_with_bboxes)
|
@@ -107,19 +98,13 @@ def detect_brain_tumor_dino(image, seg_input, debug: bool = True):
|
|
107 |
Returns:
|
108 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
109 |
"""
|
110 |
-
if debug:
|
111 |
-
logger.debug(f"Image received, shape: {image.shape}")
|
112 |
|
113 |
# Step 2: Detect brain tumor using grounding_dino
|
114 |
prompt = "detect brain tumor"
|
115 |
detections = grounding_dino(prompt, image)
|
116 |
-
if debug:
|
117 |
-
logger.debug(f"Raw detections: {detections}")
|
118 |
|
119 |
# Step 3: Overlay bounding boxes on the image
|
120 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
121 |
-
if debug:
|
122 |
-
logger.debug("Bounding boxes overlaid on the image")
|
123 |
|
124 |
# Prepare annotations for AnnotatedImage output
|
125 |
annotations = []
|
@@ -133,9 +118,6 @@ def detect_brain_tumor_dino(image, seg_input, debug: bool = True):
|
|
133 |
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
134 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
135 |
|
136 |
-
if debug:
|
137 |
-
logger.debug(f"Annotations: {annotations}")
|
138 |
-
|
139 |
# Convert image to numpy array if it's not already
|
140 |
if isinstance(image_with_bboxes, Image.Image):
|
141 |
image_with_bboxes = np.array(image_with_bboxes)
|
@@ -155,19 +137,13 @@ def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
|
|
155 |
Returns:
|
156 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
157 |
"""
|
158 |
-
if debug:
|
159 |
-
logger.debug(f"Image received, shape: {image.shape}")
|
160 |
|
161 |
# Step 2: Detect brain tumor using florencev2 - NO PROMPT
|
162 |
prompt = "detect brain tumor"
|
163 |
detections = florencev2_object_detection(prompt)
|
164 |
-
if debug:
|
165 |
-
logger.debug(f"Raw detections: {detections}")
|
166 |
|
167 |
# Step 3: Overlay bounding boxes on the image
|
168 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
169 |
-
if debug:
|
170 |
-
logger.debug("Bounding boxes overlaid on the image")
|
171 |
|
172 |
# Prepare annotations for AnnotatedImage output
|
173 |
annotations = []
|
@@ -181,9 +157,6 @@ def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
|
|
181 |
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
182 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
183 |
|
184 |
-
if debug:
|
185 |
-
logger.debug(f"Annotations: {annotations}")
|
186 |
-
|
187 |
# Convert image to numpy array if it's not already
|
188 |
if isinstance(image_with_bboxes, Image.Image):
|
189 |
image_with_bboxes = np.array(image_with_bboxes)
|
|
|
59 |
Returns:
|
60 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
61 |
"""
|
|
|
|
|
62 |
|
63 |
# Step 2: Detect brain tumor using owl_v2
|
64 |
prompt = "detect brain tumor"
|
65 |
detections = owl_v2(prompt, image)
|
|
|
|
|
66 |
|
67 |
# Step 3: Overlay bounding boxes on the image
|
68 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
|
|
|
|
69 |
|
70 |
# Prepare annotations for AnnotatedImage output
|
71 |
annotations = []
|
|
|
79 |
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
80 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
81 |
|
|
|
|
|
|
|
82 |
# Convert image to numpy array if it's not already
|
83 |
if isinstance(image_with_bboxes, Image.Image):
|
84 |
image_with_bboxes = np.array(image_with_bboxes)
|
|
|
98 |
Returns:
|
99 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
100 |
"""
|
|
|
|
|
101 |
|
102 |
# Step 2: Detect brain tumor using grounding_dino
|
103 |
prompt = "detect brain tumor"
|
104 |
detections = grounding_dino(prompt, image)
|
|
|
|
|
105 |
|
106 |
# Step 3: Overlay bounding boxes on the image
|
107 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
|
|
|
|
108 |
|
109 |
# Prepare annotations for AnnotatedImage output
|
110 |
annotations = []
|
|
|
118 |
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
119 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
120 |
|
|
|
|
|
|
|
121 |
# Convert image to numpy array if it's not already
|
122 |
if isinstance(image_with_bboxes, Image.Image):
|
123 |
image_with_bboxes = np.array(image_with_bboxes)
|
|
|
137 |
Returns:
|
138 |
tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
|
139 |
"""
|
|
|
|
|
140 |
|
141 |
# Step 2: Detect brain tumor using florencev2 - NO PROMPT
|
142 |
prompt = "detect brain tumor"
|
143 |
detections = florencev2_object_detection(prompt)
|
|
|
|
|
144 |
|
145 |
# Step 3: Overlay bounding boxes on the image
|
146 |
image_with_bboxes = overlay_bounding_boxes(image, detections)
|
|
|
|
|
147 |
|
148 |
# Prepare annotations for AnnotatedImage output
|
149 |
annotations = []
|
|
|
157 |
x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
|
158 |
annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
|
159 |
|
|
|
|
|
|
|
160 |
# Convert image to numpy array if it's not already
|
161 |
if isinstance(image_with_bboxes, Image.Image):
|
162 |
image_with_bboxes = np.array(image_with_bboxes)
|