donb-hf commited on
Commit
2c18c1f
·
1 Parent(s): f4b9423

remove debug logging

Browse files
Files changed (1) hide show
  1. app.py +0 -27
app.py CHANGED
@@ -59,19 +59,13 @@ def detect_brain_tumor_owlv2(image, seg_input, debug: bool = True):
59
  Returns:
60
  tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
61
  """
62
- if debug:
63
- logger.debug(f"Image received, shape: {image.shape}")
64
 
65
  # Step 2: Detect brain tumor using owl_v2
66
  prompt = "detect brain tumor"
67
  detections = owl_v2(prompt, image)
68
- if debug:
69
- logger.debug(f"Raw detections: {detections}")
70
 
71
  # Step 3: Overlay bounding boxes on the image
72
  image_with_bboxes = overlay_bounding_boxes(image, detections)
73
- if debug:
74
- logger.debug("Bounding boxes overlaid on the image")
75
 
76
  # Prepare annotations for AnnotatedImage output
77
  annotations = []
@@ -85,9 +79,6 @@ def detect_brain_tumor_owlv2(image, seg_input, debug: bool = True):
85
  x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
86
  annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
87
 
88
- if debug:
89
- logger.debug(f"Annotations: {annotations}")
90
-
91
  # Convert image to numpy array if it's not already
92
  if isinstance(image_with_bboxes, Image.Image):
93
  image_with_bboxes = np.array(image_with_bboxes)
@@ -107,19 +98,13 @@ def detect_brain_tumor_dino(image, seg_input, debug: bool = True):
107
  Returns:
108
  tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
109
  """
110
- if debug:
111
- logger.debug(f"Image received, shape: {image.shape}")
112
 
113
  # Step 2: Detect brain tumor using grounding_dino
114
  prompt = "detect brain tumor"
115
  detections = grounding_dino(prompt, image)
116
- if debug:
117
- logger.debug(f"Raw detections: {detections}")
118
 
119
  # Step 3: Overlay bounding boxes on the image
120
  image_with_bboxes = overlay_bounding_boxes(image, detections)
121
- if debug:
122
- logger.debug("Bounding boxes overlaid on the image")
123
 
124
  # Prepare annotations for AnnotatedImage output
125
  annotations = []
@@ -133,9 +118,6 @@ def detect_brain_tumor_dino(image, seg_input, debug: bool = True):
133
  x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
134
  annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
135
 
136
- if debug:
137
- logger.debug(f"Annotations: {annotations}")
138
-
139
  # Convert image to numpy array if it's not already
140
  if isinstance(image_with_bboxes, Image.Image):
141
  image_with_bboxes = np.array(image_with_bboxes)
@@ -155,19 +137,13 @@ def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
155
  Returns:
156
  tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
157
  """
158
- if debug:
159
- logger.debug(f"Image received, shape: {image.shape}")
160
 
161
  # Step 2: Detect brain tumor using florencev2 - NO PROMPT
162
  prompt = "detect brain tumor"
163
  detections = florencev2_object_detection(prompt)
164
- if debug:
165
- logger.debug(f"Raw detections: {detections}")
166
 
167
  # Step 3: Overlay bounding boxes on the image
168
  image_with_bboxes = overlay_bounding_boxes(image, detections)
169
- if debug:
170
- logger.debug("Bounding boxes overlaid on the image")
171
 
172
  # Prepare annotations for AnnotatedImage output
173
  annotations = []
@@ -181,9 +157,6 @@ def detect_brain_tumor_florence2(image, seg_input, debug: bool = True):
181
  x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
182
  annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
183
 
184
- if debug:
185
- logger.debug(f"Annotations: {annotations}")
186
-
187
  # Convert image to numpy array if it's not already
188
  if isinstance(image_with_bboxes, Image.Image):
189
  image_with_bboxes = np.array(image_with_bboxes)
 
59
  Returns:
60
  tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
61
  """
 
 
62
 
63
  # Step 2: Detect brain tumor using owl_v2
64
  prompt = "detect brain tumor"
65
  detections = owl_v2(prompt, image)
 
 
66
 
67
  # Step 3: Overlay bounding boxes on the image
68
  image_with_bboxes = overlay_bounding_boxes(image, detections)
 
 
69
 
70
  # Prepare annotations for AnnotatedImage output
71
  annotations = []
 
79
  x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
80
  annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
81
 
 
 
 
82
  # Convert image to numpy array if it's not already
83
  if isinstance(image_with_bboxes, Image.Image):
84
  image_with_bboxes = np.array(image_with_bboxes)
 
98
  Returns:
99
  tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
100
  """
 
 
101
 
102
  # Step 2: Detect brain tumor using grounding_dino
103
  prompt = "detect brain tumor"
104
  detections = grounding_dino(prompt, image)
 
 
105
 
106
  # Step 3: Overlay bounding boxes on the image
107
  image_with_bboxes = overlay_bounding_boxes(image, detections)
 
 
108
 
109
  # Prepare annotations for AnnotatedImage output
110
  annotations = []
 
118
  x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
119
  annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
120
 
 
 
 
121
  # Convert image to numpy array if it's not already
122
  if isinstance(image_with_bboxes, Image.Image):
123
  image_with_bboxes = np.array(image_with_bboxes)
 
137
  Returns:
138
  tuple: (numpy array of image, list of (label, (x1, y1, x2, y2)) tuples)
139
  """
 
 
140
 
141
  # Step 2: Detect brain tumor using florencev2 - NO PROMPT
142
  prompt = "detect brain tumor"
143
  detections = florencev2_object_detection(prompt)
 
 
144
 
145
  # Step 3: Overlay bounding boxes on the image
146
  image_with_bboxes = overlay_bounding_boxes(image, detections)
 
 
147
 
148
  # Prepare annotations for AnnotatedImage output
149
  annotations = []
 
157
  x1, y1, x2, y2 = int(x1*width), int(y1*height), int(x2*width), int(y2*height)
158
  annotations.append(((x1, y1, x2, y2), f"{label} {score:.2f}"))
159
 
 
 
 
160
  # Convert image to numpy array if it's not already
161
  if isinstance(image_with_bboxes, Image.Image):
162
  image_with_bboxes = np.array(image_with_bboxes)