File size: 11,919 Bytes
3bb5fb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import asyncio
from prefect import flow, task, get_run_logger
from prefect.tasks import task_input_hash
from prefect.blocks.system import Secret, JSON
from prefect.task_runners import ConcurrentTaskRunner
from prefect.concurrency.sync import concurrency
from pathlib import Path
import datetime
from datetime import timedelta
import pandas as pd
from tqdm import tqdm
from huggingface_hub import HfApi, hf_hub_url, list_datasets
import requests
import zipfile
from typing import List, Dict, Optional

# --- Constants ---
# Set a global concurrency limit for Hugging Face uploads
REPO_ID = "dwb2023/gdelt-gkg-march2020-v2"

BASE_URL = "http://data.gdeltproject.org/gdeltv2"

# Complete Column List
GKG_COLUMNS = [
    'GKGRECORDID',                 # Unique identifier
    'DATE',                        # Publication date
    'SourceCollectionIdentifier',  # Source type
    'SourceCommonName',            # Source name
    'DocumentIdentifier',          # Document URL/ID
    'V1Counts',                    # Counts of various types
    'V2.1Counts',                  # Enhanced counts with positions
    'V1Themes',                    # Theme tags
    'V2EnhancedThemes',           # Themes with positions
    'V1Locations',                 # Location mentions
    'V2EnhancedLocations',        # Locations with positions
    'V1Persons',                   # Person names
    'V2EnhancedPersons',          # Persons with positions
    'V1Organizations',             # Organization names
    'V2EnhancedOrganizations',     # Organizations with positions
    'V1.5Tone',                    # Emotional dimensions
    'V2.1EnhancedDates',          # Date mentions
    'V2GCAM',                      # Global Content Analysis Measures
    'V2.1SharingImage',            # Publisher selected image
    'V2.1RelatedImages',          # Article images
    'V2.1SocialImageEmbeds',      # Social media images
    'V2.1SocialVideoEmbeds',      # Social media videos
    'V2.1Quotations',             # Quote extractions
    'V2.1AllNames',               # Named entities
    'V2.1Amounts',                # Numeric amounts
    'V2.1TranslationInfo',        # Translation metadata
    'V2ExtrasXML'                 # Additional XML data
]

# Priority Columns
PRIORITY_COLUMNS = [
    'GKGRECORDID',                # Unique identifier
    'DATE',                       # Publication date
    'SourceCollectionIdentifier', # Source type
    'SourceCommonName',           # Source name
    'DocumentIdentifier',         # Document URL/ID
    'V1Counts',                   # Numeric mentions
    'V2.1Counts',                # Enhanced counts
    'V1Themes',                   # Theme tags
    'V2EnhancedThemes',          # Enhanced themes
    'V1Locations',                # Geographic data
    'V2EnhancedLocations',       # Enhanced locations
    'V1Persons',                  # Person mentions
    'V2EnhancedPersons',         # Enhanced persons
    'V1Organizations',            # Organization mentions
    'V2EnhancedOrganizations',   # Enhanced organizations
    'V1.5Tone',                  # Sentiment scores
    'V2.1EnhancedDates',        # Date mentions
    'V2GCAM',                    # Enhanced sentiment
    'V2.1Quotations',           # Direct quotes
    'V2.1AllNames',             # All named entities
    'V2.1Amounts'               # Numeric data
]

# --- Tasks ---

@task(retries=3, retry_delay_seconds=30, log_prints=True)
def setup_directories(base_path: Path) -> dict:
    """Create processing directories."""
    logger = get_run_logger()
    try:
        raw_dir = base_path / "gdelt_raw"
        processed_dir = base_path / "gdelt_processed"
        raw_dir.mkdir(parents=True, exist_ok=True)
        processed_dir.mkdir(parents=True, exist_ok=True)
        logger.info("Directories created successfully")
        return {"raw": raw_dir, "processed": processed_dir}
    except Exception as e:
        logger.error(f"Directory creation failed: {str(e)}")
        raise

@task(retries=2, log_prints=True)
def generate_gdelt_urls(start_date: datetime.datetime, end_date: datetime.datetime) -> Dict[datetime.date, List[str]]:
    """
    Generate a dictionary keyed by date. Each value is a list of URLs (one per 15-minute interval).
    """
    logger = get_run_logger()
    url_groups = {}
    try:
        current_date = start_date.date()
        while current_date <= end_date.date():
            urls = [
                f"{BASE_URL}/{current_date.strftime('%Y%m%d')}{hour:02}{minute:02}00.gkg.csv.zip"
                for hour in range(24)
                for minute in [0, 15, 30, 45]
            ]
            url_groups[current_date] = urls
            current_date += timedelta(days=1)
        logger.info(f"Generated URL groups for dates: {list(url_groups.keys())}")
        return url_groups
    except Exception as e:
        logger.error(f"URL generation failed: {str(e)}")
        raise

@task(retries=3, retry_delay_seconds=30, log_prints=True)
def download_file(url: str, raw_dir: Path) -> Path:
    """Download a single CSV (zip) file from the given URL."""
    logger = get_run_logger()
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        filename = Path(url).name
        zip_path = raw_dir / filename
        with zip_path.open('wb') as f:
            f.write(response.content)
        logger.info(f"Downloaded {filename}")

        # Optionally, extract the CSV from the ZIP archive.
        with zipfile.ZipFile(zip_path, 'r') as z:
            # Assuming the zip contains one CSV file.
            csv_names = z.namelist()
            if csv_names:
                extracted_csv = raw_dir / csv_names[0]
                z.extractall(path=raw_dir)
                logger.info(f"Extracted {csv_names[0]}")
                return extracted_csv
            else:
                raise ValueError("Zip file is empty.")
    except Exception as e:
        logger.error(f"Error downloading {url}: {str(e)}")
        raise

@task(retries=2, log_prints=True)
def convert_and_filter_combined(csv_paths: List[Path], processed_dir: Path, date: datetime.date) -> Path:
    """
    Combine multiple CSV files (for one day) into a single DataFrame,
    filter to only the required columns, optimize data types,
    and write out as a single Parquet file.
    """
    logger = get_run_logger()
    try:
        dfs = []
        for csv_path in csv_paths:
            df = pd.read_csv(
                csv_path,
                sep='\t',
                names=GKG_COLUMNS,
                dtype='string',
                quoting=3,
                na_values=[''],
                encoding='utf-8',
                encoding_errors='replace'
            )
            dfs.append(df)
        combined_df = pd.concat(dfs, ignore_index=True)
        filtered_df = combined_df[PRIORITY_COLUMNS].copy()
        # Convert the date field to datetime; adjust the format if necessary.
        if 'V2.1DATE' in filtered_df.columns:
            filtered_df['V2.1DATE'] = pd.to_datetime(
                filtered_df['V2.1DATE'], format='%Y%m%d%H%M%S', errors='coerce'
            )
        output_filename = f"gdelt_gkg_{date.strftime('%Y%m%d')}.parquet"
        output_path = processed_dir / output_filename
        filtered_df.to_parquet(output_path, engine='pyarrow', compression='snappy', index=False)
        logger.info(f"Converted and filtered data for {date} into {output_filename}")
        return output_path
    except Exception as e:
        logger.error(f"Error processing CSVs for {date}: {str(e)}")
        raise

@task(retries=3, retry_delay_seconds=30, log_prints=True)
def upload_to_hf(file_path: Path, token: str) -> bool:
    """Upload task with global concurrency limit."""
    logger = get_run_logger()
    try:
        with concurrency("hf_uploads", occupy=1):
            # Enable the optimized HF Transfer backend.
            os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

            api = HfApi()
            api.upload_file(
                path_or_fileobj=str(file_path),
                path_in_repo=file_path.name,
                repo_id=REPO_ID,
                repo_type="dataset",
                token=token,
            )
            logger.info(f"Uploaded {file_path.name}")
        return True
    except Exception as e:
        logger.error(f"Upload failed for {file_path.name}: {str(e)}")
        raise

@task(retries=3, retry_delay_seconds=120, log_prints=True)
def create_hf_repo(token: str) -> bool:
    """
    Validate that the Hugging Face dataset repository exists; create it if not.
    """
    logger = get_run_logger()
    try:
        api = HfApi()
        datasets = [ds.id for ds in list_datasets(token=token)]
        if REPO_ID in datasets:
            logger.info(f"Dataset repository '{REPO_ID}' already exists.")
            return True
        # Create the repository if it doesn't exist.
        api.create_repo(repo_id=REPO_ID, repo_type="dataset", token=token, private=False)
        logger.info(f"Successfully created dataset repository: {REPO_ID}")
        return True
    except Exception as e:
        logger.error(f"Failed to create or validate dataset repo '{REPO_ID}': {str(e)}")
        raise RuntimeError(f"Repository validation/creation failed for '{REPO_ID}'") from e

@flow(name="Process Single Day", log_prints=True)
def process_single_day(
    date: datetime.date, urls: List[str], directories: dict, hf_token: str
) -> bool:
    """
    Process one day's data by:
      1. Downloading all CSV files concurrently.
      2. Merging, filtering, and optimizing the CSVs.
      3. Writing out a single daily Parquet file.
      4. Uploading the file to the Hugging Face Hub.
    """
    logger = get_run_logger()
    try:
        # Download and process data (unlimited concurrency)
        csv_paths = [download_file(url, directories["raw"]) for url in urls]
        daily_parquet = convert_and_filter_combined(csv_paths, directories["processed"], date)
        
        # Upload with global concurrency limit
        upload_to_hf(daily_parquet, hf_token)  # <-- Throttled to 2 concurrent
    
        logger.info(f"Completed {date}")
        return True
    except Exception as e:
        logger.error(f"Day {date} failed: {str(e)}")
        raise

@flow(
    name="Process Date Range",
    task_runner=ConcurrentTaskRunner(),  # Parallel subflows
    log_prints=True
)
def process_date_range(base_path: Path = Path("data")):
    """
    Main ETL flow:
      1. Load parameters and credentials.
      2. Validate (or create) the Hugging Face repository.
      3. Setup directories.
      4. Generate URL groups by date.
      5. Process each day concurrently.
    """
    logger = get_run_logger()

    # Load parameters from a JSON block.
    json_block = JSON.load("gdelt-etl-parameters")
    params = json_block.value
    start_date = datetime.datetime.fromisoformat(params.get("start_date", "2020-03-16T00:00:00"))
    end_date = datetime.datetime.fromisoformat(params.get("end_date", "2020-03-22T00:00:00"))

    # Load the Hugging Face token from a Secret block.
    secret_block = Secret.load("huggingface-token")
    hf_token = secret_block.get()

    # Validate or create the repository.
    create_hf_repo(hf_token)

    directories = setup_directories(base_path)
    url_groups = generate_gdelt_urls(start_date, end_date)
    
    # Process days concurrently (subflows)
    futures = [process_single_day(date, urls, directories, hf_token) 
              for date, urls in url_groups.items()]
    
    # Wait for completion (optional error handling)
    for future in futures:
        try:
            future.result()
        except Exception as e:
            logger.error(f"Failed day: {str(e)}")

# --- Entry Point ---
if __name__ == "__main__":
    process_date_range.serve(
        name="gdelt-etl-production-v2",
        tags=["gdelt", "etl", "production"],
    )