import gradio as gr import re import difflib import os from typing import List, Dict, Tuple, Optional from dataclasses import dataclass import numpy as np @dataclass class Segment: """A segment of a transcript with a speaker and text""" speaker: str timestamp: str text: str original_text: str # The text as it appears in the original transcript index: int # Position in the original transcript def clean_text_for_matching(text: str) -> str: """Clean text for matching purposes (remove formatting, punctuation, etc.)""" # Remove markdown links and formatting text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text) # Replace markdown links with just the text text = re.sub(r'\*\*|\*', '', text) # Remove bold and italic formatting # Remove common filler words and punctuation for better matching text = re.sub(r'[,.;:!?]', ' ', text) text = re.sub(r'\s+', ' ', text) return text.lower().strip() def load_transcript_file(file_path: str) -> str: """Load transcript from a file""" with open(file_path, 'r', encoding='utf-8') as f: return f.read() def parse_transcript(transcript: str) -> List[Segment]: """ Parse transcript into segments. Works with both formats: - Speaker LastName 00:00:00 - **Speaker LastName** *00:00:00* """ # Match both markdown and plain formats pattern = r"(?:\*\*)?(?:Speaker\s+)?([A-Za-z]+)(?:\*\*)?\s+(?:\*)?([0-9:]+)(?:\*)?\s*\n\n(.*?)(?=\n\n(?:\*\*)?(?:Speaker\s+)?[A-Za-z]+|\Z)" segments = [] for i, match in enumerate(re.finditer(pattern, transcript, re.DOTALL)): speaker, timestamp, text = match.groups() original_text = text.strip() cleaned_text = clean_text_for_matching(original_text) segments.append(Segment(speaker, timestamp, cleaned_text, original_text, i)) return segments def align_segments(auto_segments: List[Segment], human_segments: List[Segment]) -> Dict[int, int]: """ Align segments from human-edited transcript to auto-generated transcript. Returns a dictionary mapping human segment indices to auto segment indices. """ alignments = {} # Create text similarity matrix similarity_matrix = np.zeros((len(human_segments), len(auto_segments))) for h_idx, h_segment in enumerate(human_segments): for a_idx, a_segment in enumerate(auto_segments): similarity = difflib.SequenceMatcher(None, h_segment.text, a_segment.text).ratio() similarity_matrix[h_idx, a_idx] = similarity # Find best matches while maintaining order remaining_auto_indices = set(range(len(auto_segments))) for h_idx, h_segment in enumerate(human_segments): # Find the best matching auto segment that hasn't been assigned yet best_match = -1 best_similarity = 0.5 # Threshold for considering a match for a_idx in remaining_auto_indices: similarity = similarity_matrix[h_idx, a_idx] if similarity > best_similarity: # Check if this would violate sequence ordering if all(aligned_a_idx < a_idx for aligned_h_idx, aligned_a_idx in alignments.items() if aligned_h_idx < h_idx): best_match = a_idx best_similarity = similarity if best_match >= 0: alignments[h_idx] = best_match remaining_auto_indices.remove(best_match) return alignments def update_transcript(human_segments: List[Segment], auto_segments: List[Segment], alignments: Dict[int, int], is_markdown: bool) -> str: """ Create updated transcript by transferring timestamps from auto segments to human segments. Preserves all human edits, formatting, links, etc. """ updated_segments = [] for h_idx, h_segment in enumerate(human_segments): if h_idx in alignments: # Segment was matched, use timestamp from auto segment a_idx = alignments[h_idx] if is_markdown: updated_segments.append(f"**{h_segment.speaker}** *{auto_segments[a_idx].timestamp}*\n\n{h_segment.original_text}") else: updated_segments.append(f"Speaker {h_segment.speaker} {auto_segments[a_idx].timestamp}\n\n{h_segment.original_text}") else: # No match found, keep original timestamp but mark it if is_markdown: updated_segments.append(f"**{h_segment.speaker}** *{h_segment.timestamp} [NO MATCH]*\n\n{h_segment.original_text}") else: updated_segments.append(f"Speaker {h_segment.speaker} {h_segment.timestamp} [NO MATCH]\n\n{h_segment.original_text}") return "\n\n".join(updated_segments) def generate_match_report(human_segments: List[Segment], auto_segments: List[Segment], alignments: Dict[int, int]) -> str: """Generate a report about the matching process""" total_human = len(human_segments) total_auto = len(auto_segments) total_matched = len(alignments) report = f"### Matching Report\n\n" report += f"- Human segments: {total_human}\n" report += f"- Auto segments: {total_auto}\n" report += f"- Matched segments: {total_matched} ({total_matched/total_human*100:.1f}%)\n" if total_matched < total_human: report += f"\n### Unmatched Segments ({total_human - total_matched})\n\n" for h_idx, h_segment in enumerate(human_segments): if h_idx not in alignments: report += f"- Speaker {h_segment.speaker} at {h_segment.timestamp}: '{h_segment.text[:50]}...'\n" # Calculate average similarity of matches if alignments: similarities = [ difflib.SequenceMatcher(None, human_segments[h_idx].text, auto_segments[a_idx].text).ratio() for h_idx, a_idx in alignments.items() ] avg_similarity = sum(similarities) / len(similarities) report += f"\n### Match Quality\n\n" report += f"- Average similarity: {avg_similarity:.2f}\n" return report def process_transcripts(auto_transcript, human_transcript): """Process the auto and human transcripts to update timestamps""" try: # Load transcripts auto_content = auto_transcript.decode('utf-8') if isinstance(auto_transcript, bytes) else auto_transcript human_content = human_transcript.decode('utf-8') if isinstance(human_transcript, bytes) else human_transcript # Check if transcripts use markdown formatting is_markdown = "**" in human_content # Parse transcripts auto_segments = parse_transcript(auto_content) human_segments = parse_transcript(human_content) if not auto_segments or not human_segments: return "Error: Could not parse transcripts. Please check the format.", "" # Align segments alignments = align_segments(auto_segments, human_segments) # Update transcript updated_transcript = update_transcript(human_segments, auto_segments, alignments, is_markdown) # Generate report report = generate_match_report(human_segments, auto_segments, alignments) return updated_transcript, report except Exception as e: return f"Error processing transcripts: {str(e)}", "" def save_transcript(transcript: str) -> str: """Save transcript to a temporary file and return the path""" output_dir = "output" if not os.path.exists(output_dir): os.makedirs(output_dir) output_path = os.path.join(output_dir, "updated_transcript.md") with open(output_path, 'w', encoding='utf-8') as f: f.write(transcript) return output_path # Create Gradio interface with gr.Blocks(title="Transcript Timestamp Synchronizer") as demo: gr.Markdown(""" # 🎙️ Transcript Timestamp Synchronizer This tool updates timestamps in human-edited transcripts based on new auto-generated transcripts. ## Instructions: 1. Upload or paste your new auto-generated transcript (with updated timestamps) 2. Upload or paste your human-edited transcript (with old timestamps) 3. Click "Synchronize Timestamps" to generate an updated transcript The tool will match segments between the transcripts and update the timestamps while preserving all human edits. """) with gr.Row(): with gr.Column(): auto_source = gr.Radio( ["Upload File", "Paste Text"], label="Auto-generated Transcript Source", value="Paste Text" ) auto_file = gr.File( label="Upload Auto-generated Transcript", file_types=[".md", ".txt"], visible=False ) auto_text = gr.TextArea( label="Auto-generated Transcript (with new timestamps)", placeholder="Paste the auto-generated transcript here...", lines=15, visible=True ) with gr.Column(): human_source = gr.Radio( ["Upload File", "Paste Text"], label="Human-edited Transcript Source", value="Paste Text" ) human_file = gr.File( label="Upload Human-edited Transcript", file_types=[".md", ".txt"], visible=False ) human_text = gr.TextArea( label="Human-edited Transcript (with old timestamps)", placeholder="Paste the human-edited transcript here...", lines=15, visible=True ) update_btn = gr.Button("Synchronize Timestamps") with gr.Tabs(): with gr.TabItem("Updated Transcript"): updated_transcript = gr.TextArea( label="Updated Transcript", placeholder="The updated transcript will appear here...", lines=20 ) download_btn = gr.Button("Download Updated Transcript") download_path = gr.File(label="Download", visible=False) with gr.TabItem("Matching Report"): matching_report = gr.Markdown( label="Matching Report", value="The matching report will appear here..." ) # Handle visibility of upload/paste options def update_auto_visibility(choice): return gr.update(visible=choice=="Upload File"), gr.update(visible=choice=="Paste Text") def update_human_visibility(choice): return gr.update(visible=choice=="Upload File"), gr.update(visible=choice=="Paste Text") auto_source.change(update_auto_visibility, auto_source, [auto_file, auto_text]) human_source.change(update_human_visibility, human_source, [human_file, human_text]) # Load file content if uploaded def load_auto_file(file): if file is None: return "" with open(file.name, "r", encoding="utf-8") as f: return f.read() def load_human_file(file): if file is None: return "" with open(file.name, "r", encoding="utf-8") as f: return f.read() auto_file.change(load_auto_file, auto_file, auto_text) human_file.change(load_human_file, human_file, human_text) # Process transcripts def handle_process(auto_content, human_content): return process_transcripts(auto_content, human_content) update_btn.click( fn=handle_process, inputs=[auto_text, human_text], outputs=[updated_transcript, matching_report] ) # Handle download def prepare_download(transcript): if not transcript: return None return save_transcript(transcript) download_btn.click( fn=prepare_download, inputs=[updated_transcript], outputs=[download_path] ) # For local testing if __name__ == "__main__": demo.launch()