Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import asyncio
|
3 |
from pathlib import Path
|
4 |
-
import
|
|
|
5 |
import os
|
6 |
from dataclasses import dataclass
|
7 |
from typing import Dict
|
8 |
from youtube_transcript_api import YouTubeTranscriptApi
|
9 |
import re
|
10 |
import pandas as pd
|
|
|
11 |
|
12 |
# Move relevant classes and functions into app.py
|
13 |
@dataclass
|
@@ -15,41 +17,41 @@ class ContentRequest:
|
|
15 |
prompt_key: str
|
16 |
|
17 |
class ContentGenerator:
|
18 |
-
def __init__(self):
|
19 |
self.current_prompts = self._load_default_prompts()
|
20 |
-
self.client =
|
21 |
-
|
22 |
def _load_default_prompts(self) -> Dict[str, str]:
|
23 |
"""Load default prompts and examples from files and CSVs."""
|
24 |
-
|
25 |
# Load CSV examples
|
26 |
try:
|
27 |
timestamps_df = pd.read_csv("data/Timestamps.csv")
|
28 |
titles_df = pd.read_csv("data/Titles & Thumbnails.csv")
|
29 |
descriptions_df = pd.read_csv("data/Viral Episode Descriptions.csv")
|
30 |
clips_df = pd.read_csv("data/Viral Twitter Clips.csv")
|
31 |
-
|
32 |
# Format timestamp examples
|
33 |
timestamp_examples = "\n\n".join(timestamps_df['Timestamps'].dropna().tolist())
|
34 |
-
|
35 |
# Format title examples
|
36 |
title_examples = "\n".join([
|
37 |
f'Title: "{row.Titles}"\nThumbnail: "{row.Thumbnail}"'
|
38 |
for _, row in titles_df.iterrows()
|
39 |
])
|
40 |
-
|
41 |
# Format description examples
|
42 |
description_examples = "\n".join([
|
43 |
f'Tweet: "{row["Tweet Text"]}"'
|
44 |
for _, row in descriptions_df.iterrows()
|
45 |
])
|
46 |
-
|
47 |
# Format clip examples
|
48 |
clip_examples = "\n\n".join([
|
49 |
f'Tweet Text: "{row["Tweet Text"]}"\nClip Transcript: "{row["Clip Transcript"]}"'
|
50 |
for _, row in clips_df.iterrows() if pd.notna(row["Tweet Text"])
|
51 |
])
|
52 |
-
|
53 |
except Exception as e:
|
54 |
print(f"Warning: Error loading CSV examples: {e}")
|
55 |
timestamp_examples = ""
|
@@ -61,7 +63,7 @@ class ContentGenerator:
|
|
61 |
prompts = {}
|
62 |
for key in ["previews", "clips", "description", "timestamps", "titles_and_thumbnails"]:
|
63 |
prompt = Path(f"prompts/{key}.txt").read_text()
|
64 |
-
|
65 |
# Inject relevant examples
|
66 |
if key == "timestamps":
|
67 |
prompt = prompt.replace("{timestamps_examples}", timestamp_examples)
|
@@ -71,31 +73,30 @@ class ContentGenerator:
|
|
71 |
prompt = prompt.replace("{description_examples}", description_examples)
|
72 |
elif key == "clips":
|
73 |
prompt = prompt.replace("{clip_examples}", clip_examples)
|
74 |
-
|
75 |
prompts[key] = prompt
|
76 |
|
77 |
return prompts
|
78 |
|
79 |
async def generate_content(self, request: ContentRequest, transcript: str) -> str:
|
80 |
-
"""Generate content using
|
81 |
try:
|
82 |
print(f"\nFull prompt for {request.prompt_key}:")
|
83 |
print("=== SYSTEM PROMPT ===")
|
84 |
print(self.current_prompts[request.prompt_key])
|
85 |
print("=== END SYSTEM PROMPT ===\n")
|
86 |
-
|
87 |
-
response = self.client.
|
88 |
-
model="
|
89 |
-
|
90 |
-
|
91 |
-
messages=[{"role": "user", "content": f"Process this transcript:\n\n{transcript}"}]
|
92 |
)
|
93 |
-
|
94 |
-
if response and hasattr(response, '
|
95 |
-
return response.
|
96 |
else:
|
97 |
return f"Error: Unexpected response structure for {request.prompt_key}"
|
98 |
-
|
99 |
except Exception as e:
|
100 |
return f"Error generating content: {str(e)}"
|
101 |
|
@@ -117,7 +118,8 @@ def get_transcript(video_id: str) -> str:
|
|
117 |
|
118 |
class TranscriptProcessor:
|
119 |
def __init__(self):
|
120 |
-
self.generator = ContentGenerator()
|
|
|
121 |
|
122 |
def _get_youtube_transcript(self, url: str) -> str:
|
123 |
"""Get transcript from YouTube URL."""
|
@@ -128,14 +130,14 @@ class TranscriptProcessor:
|
|
128 |
except Exception as e:
|
129 |
raise Exception(f"Error fetching YouTube transcript: {str(e)}")
|
130 |
|
131 |
-
async def process_transcript(self,
|
132 |
"""Process input and generate all content."""
|
|
|
133 |
try:
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
)
|
139 |
|
140 |
# Process each type sequentially
|
141 |
sections = {}
|
@@ -178,34 +180,36 @@ class TranscriptProcessor:
|
|
178 |
))
|
179 |
return "Prompts updated for this session!"
|
180 |
|
|
|
|
|
181 |
def create_interface():
|
182 |
"""Create the Gradio interface."""
|
183 |
processor = TranscriptProcessor()
|
184 |
-
|
185 |
-
with gr.Blocks(title="Podcast Content Generator") as app:
|
186 |
gr.Markdown(
|
187 |
"""
|
188 |
-
# Podcast Content Generator
|
189 |
-
Generate preview clips, timestamps, descriptions and more from podcast transcripts
|
190 |
-
|
191 |
-
|
192 |
"""
|
193 |
)
|
194 |
-
|
195 |
with gr.Tab("Generate Content"):
|
196 |
-
|
197 |
-
label="
|
198 |
-
|
199 |
-
|
200 |
)
|
201 |
-
submit_btn = gr.Button("Generate Content")
|
202 |
-
|
203 |
output = gr.Markdown() # Single markdown output
|
204 |
|
205 |
async def process_wrapper(text):
|
206 |
print("Process wrapper started")
|
207 |
print(f"Input text: {text[:100]}...")
|
208 |
-
|
209 |
try:
|
210 |
result = await processor.process_transcript(text)
|
211 |
print("Process completed, got results")
|
@@ -216,7 +220,7 @@ def create_interface():
|
|
216 |
|
217 |
submit_btn.click(
|
218 |
fn=process_wrapper,
|
219 |
-
inputs=
|
220 |
outputs=output,
|
221 |
queue=True
|
222 |
)
|
@@ -224,10 +228,10 @@ def create_interface():
|
|
224 |
with gr.Tab("Customize Prompts"):
|
225 |
gr.Markdown(
|
226 |
"""
|
227 |
-
## Customize Generation Prompts
|
228 |
Here you can experiment with different prompts during your session.
|
229 |
Changes will remain active until you reload the page.
|
230 |
-
|
231 |
Tip: Copy your preferred prompts somewhere safe if you want to reuse them later!
|
232 |
"""
|
233 |
)
|
@@ -240,7 +244,7 @@ def create_interface():
|
|
240 |
)
|
241 |
for key in [
|
242 |
"previews",
|
243 |
-
"clips",
|
244 |
"description",
|
245 |
"timestamps",
|
246 |
"titles_and_thumbnails"
|
@@ -257,7 +261,7 @@ def create_interface():
|
|
257 |
)
|
258 |
|
259 |
# Reset button
|
260 |
-
reset_btn = gr.Button("Reset to Default Prompts")
|
261 |
reset_btn.click(
|
262 |
fn=lambda: (
|
263 |
processor.update_prompts(*processor.generator.current_prompts.values()),
|
@@ -269,4 +273,4 @@ def create_interface():
|
|
269 |
return app
|
270 |
|
271 |
if __name__ == "__main__":
|
272 |
-
create_interface().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import asyncio
|
3 |
from pathlib import Path
|
4 |
+
from google import genai
|
5 |
+
from google.genai import types
|
6 |
import os
|
7 |
from dataclasses import dataclass
|
8 |
from typing import Dict
|
9 |
from youtube_transcript_api import YouTubeTranscriptApi
|
10 |
import re
|
11 |
import pandas as pd
|
12 |
+
import assemblyai as aai
|
13 |
|
14 |
# Move relevant classes and functions into app.py
|
15 |
@dataclass
|
|
|
17 |
prompt_key: str
|
18 |
|
19 |
class ContentGenerator:
|
20 |
+
def __init__(self,api_key):
|
21 |
self.current_prompts = self._load_default_prompts()
|
22 |
+
self.client = genai.Client(api_key=api_key)
|
23 |
+
|
24 |
def _load_default_prompts(self) -> Dict[str, str]:
|
25 |
"""Load default prompts and examples from files and CSVs."""
|
26 |
+
|
27 |
# Load CSV examples
|
28 |
try:
|
29 |
timestamps_df = pd.read_csv("data/Timestamps.csv")
|
30 |
titles_df = pd.read_csv("data/Titles & Thumbnails.csv")
|
31 |
descriptions_df = pd.read_csv("data/Viral Episode Descriptions.csv")
|
32 |
clips_df = pd.read_csv("data/Viral Twitter Clips.csv")
|
33 |
+
|
34 |
# Format timestamp examples
|
35 |
timestamp_examples = "\n\n".join(timestamps_df['Timestamps'].dropna().tolist())
|
36 |
+
|
37 |
# Format title examples
|
38 |
title_examples = "\n".join([
|
39 |
f'Title: "{row.Titles}"\nThumbnail: "{row.Thumbnail}"'
|
40 |
for _, row in titles_df.iterrows()
|
41 |
])
|
42 |
+
|
43 |
# Format description examples
|
44 |
description_examples = "\n".join([
|
45 |
f'Tweet: "{row["Tweet Text"]}"'
|
46 |
for _, row in descriptions_df.iterrows()
|
47 |
])
|
48 |
+
|
49 |
# Format clip examples
|
50 |
clip_examples = "\n\n".join([
|
51 |
f'Tweet Text: "{row["Tweet Text"]}"\nClip Transcript: "{row["Clip Transcript"]}"'
|
52 |
for _, row in clips_df.iterrows() if pd.notna(row["Tweet Text"])
|
53 |
])
|
54 |
+
|
55 |
except Exception as e:
|
56 |
print(f"Warning: Error loading CSV examples: {e}")
|
57 |
timestamp_examples = ""
|
|
|
63 |
prompts = {}
|
64 |
for key in ["previews", "clips", "description", "timestamps", "titles_and_thumbnails"]:
|
65 |
prompt = Path(f"prompts/{key}.txt").read_text()
|
66 |
+
|
67 |
# Inject relevant examples
|
68 |
if key == "timestamps":
|
69 |
prompt = prompt.replace("{timestamps_examples}", timestamp_examples)
|
|
|
73 |
prompt = prompt.replace("{description_examples}", description_examples)
|
74 |
elif key == "clips":
|
75 |
prompt = prompt.replace("{clip_examples}", clip_examples)
|
76 |
+
|
77 |
prompts[key] = prompt
|
78 |
|
79 |
return prompts
|
80 |
|
81 |
async def generate_content(self, request: ContentRequest, transcript: str) -> str:
|
82 |
+
"""Generate content using Gemini asynchronously."""
|
83 |
try:
|
84 |
print(f"\nFull prompt for {request.prompt_key}:")
|
85 |
print("=== SYSTEM PROMPT ===")
|
86 |
print(self.current_prompts[request.prompt_key])
|
87 |
print("=== END SYSTEM PROMPT ===\n")
|
88 |
+
|
89 |
+
response = self.client.models.generate_content(
|
90 |
+
model="gemini-2.5-pro-exp-03-25",
|
91 |
+
config=types.GenerateContentConfig(system_instruction=self.current_prompts[request.prompt_key]),
|
92 |
+
contents=transcript
|
|
|
93 |
)
|
94 |
+
|
95 |
+
if response and hasattr(response, 'candidates'):
|
96 |
+
return response.text
|
97 |
else:
|
98 |
return f"Error: Unexpected response structure for {request.prompt_key}"
|
99 |
+
|
100 |
except Exception as e:
|
101 |
return f"Error generating content: {str(e)}"
|
102 |
|
|
|
118 |
|
119 |
class TranscriptProcessor:
|
120 |
def __init__(self):
|
121 |
+
self.generator = ContentGenerator(api_key=os.getenv("GOOGLE_API_KEY"))
|
122 |
+
|
123 |
|
124 |
def _get_youtube_transcript(self, url: str) -> str:
|
125 |
"""Get transcript from YouTube URL."""
|
|
|
130 |
except Exception as e:
|
131 |
raise Exception(f"Error fetching YouTube transcript: {str(e)}")
|
132 |
|
133 |
+
async def process_transcript(self, audio_file):
|
134 |
"""Process input and generate all content."""
|
135 |
+
audio_path = audio_file.name
|
136 |
try:
|
137 |
+
aai.settings.api_key = os.getenv("ASSEMBLYAI_API_KEY")
|
138 |
+
config = aai.TranscriptionConfig(speaker_labels=True, language_code="en")
|
139 |
+
transcript_iter = aai.Transcriber().transcribe(str(audio_path), config=config)
|
140 |
+
transcript = transcript_iter.text
|
|
|
141 |
|
142 |
# Process each type sequentially
|
143 |
sections = {}
|
|
|
180 |
))
|
181 |
return "Prompts updated for this session!"
|
182 |
|
183 |
+
|
184 |
+
|
185 |
def create_interface():
|
186 |
"""Create the Gradio interface."""
|
187 |
processor = TranscriptProcessor()
|
188 |
+
|
189 |
+
with gr.Blocks(title="Gemini Podcast Content Generator") as app:
|
190 |
gr.Markdown(
|
191 |
"""
|
192 |
+
# Gemini Podcast Content Generator
|
193 |
+
Generate preview clips, timestamps, descriptions and more from podcast transcripts using Gemini.
|
194 |
+
|
195 |
+
Upload an audio file to get started!
|
196 |
"""
|
197 |
)
|
198 |
+
|
199 |
with gr.Tab("Generate Content"):
|
200 |
+
input_audio = gr.File(
|
201 |
+
label="Upload Audio File",
|
202 |
+
file_count="single",
|
203 |
+
file_types=["audio"]
|
204 |
)
|
205 |
+
submit_btn = gr.Button("Generate Content with Gemini")
|
206 |
+
|
207 |
output = gr.Markdown() # Single markdown output
|
208 |
|
209 |
async def process_wrapper(text):
|
210 |
print("Process wrapper started")
|
211 |
print(f"Input text: {text[:100]}...")
|
212 |
+
|
213 |
try:
|
214 |
result = await processor.process_transcript(text)
|
215 |
print("Process completed, got results")
|
|
|
220 |
|
221 |
submit_btn.click(
|
222 |
fn=process_wrapper,
|
223 |
+
inputs=input_audio,
|
224 |
outputs=output,
|
225 |
queue=True
|
226 |
)
|
|
|
228 |
with gr.Tab("Customize Prompts"):
|
229 |
gr.Markdown(
|
230 |
"""
|
231 |
+
## Customize Generation Prompts for Gemini
|
232 |
Here you can experiment with different prompts during your session.
|
233 |
Changes will remain active until you reload the page.
|
234 |
+
|
235 |
Tip: Copy your preferred prompts somewhere safe if you want to reuse them later!
|
236 |
"""
|
237 |
)
|
|
|
244 |
)
|
245 |
for key in [
|
246 |
"previews",
|
247 |
+
"clips",
|
248 |
"description",
|
249 |
"timestamps",
|
250 |
"titles_and_thumbnails"
|
|
|
261 |
)
|
262 |
|
263 |
# Reset button
|
264 |
+
reset_btn = gr.Button("Reset to Default Gemini Prompts")
|
265 |
reset_btn.click(
|
266 |
fn=lambda: (
|
267 |
processor.update_prompts(*processor.generator.current_prompts.values()),
|
|
|
273 |
return app
|
274 |
|
275 |
if __name__ == "__main__":
|
276 |
+
create_interface().launch()
|