project1 / app.py
dtkne's picture
Update app.py
beed497 verified
raw
history blame
2.99 kB
import gradio as gr
import os
from moviepy.editor import VideoFileClip
from transformers import pipeline
# Load models
asr = pipeline(task="automatic-speech-recognition", model="distil-whisper/distil-small.en")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
# Global transcript
stored_transcript = ""
def transcribe_and_summarize(video_file):
global stored_transcript
if video_file is None:
return "Error: No file provided.", ""
try:
video = VideoFileClip(video_file)
audio_path = "temp_audio.wav"
video.audio.write_audiofile(audio_path, codec='pcm_s16le')
transcription_result = asr(audio_path, return_timestamps=True)
transcribed_text = " ".join([segment['text'] for segment in transcription_result['chunks']])
stored_transcript = transcribed_text
if len(transcribed_text.split()) < 50:
summarized_text = "Text too short to summarize."
else:
summary_result = summarizer(transcribed_text, max_length=500, min_length=100, do_sample=False)
summarized_text = summary_result[0]['summary_text']
return transcribed_text, summarized_text
except Exception as e:
return f"Error: {str(e)}", ""
def answer_question(question):
global stored_transcript
if not stored_transcript:
return "Please transcribe a video first."
result = qa_pipeline(question=question, context=stored_transcript)
return result['answer']
# Gradio UI
with gr.Blocks(theme=gr.themes.Base()) as iface:
gr.Markdown("## πŸŽ₯ Video Transcriber, Summarizer & Q&A Tool")
gr.Markdown("Upload a video to get a transcript, summary, and ask questions about its content.")
with gr.Tab("1️⃣ Transcription & Summary"):
with gr.Row():
video_input = gr.Video(label="πŸ“‚ Upload Video (.mp4)", interactive=True)
with gr.Row():
transcribe_btn = gr.Button("πŸš€ Transcribe and Summarize")
with gr.Row():
transcribed_text = gr.Textbox(label="πŸ“ Transcribed Text", lines=8, interactive=False)
summarized_text = gr.Textbox(label="πŸ“„ Summarized Text", lines=8, interactive=False)
transcribe_btn.click(fn=transcribe_and_summarize, inputs=video_input, outputs=[transcribed_text, summarized_text])
with gr.Tab("2️⃣ Ask Questions"):
with gr.Row():
question_input = gr.Textbox(label="❓ Ask a question based on the transcript", placeholder="E.g., What is the main topic?")
with gr.Row():
ask_btn = gr.Button("πŸ” Get Answer")
with gr.Row():
answer_output = gr.Textbox(label="πŸ’¬ Answer", interactive=False)
ask_btn.click(fn=answer_question, inputs=question_input, outputs=answer_output)
# Launch app
port = int(os.environ.get('PORT1', 7860))
iface.launch(share=True, server_port=port)