Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import os
|
4 |
-
import subprocess
|
5 |
from pytubefix import YouTube
|
6 |
from moviepy.editor import VideoFileClip
|
7 |
from transformers import pipeline
|
8 |
-
import subprocess
|
9 |
-
import sys
|
10 |
-
|
11 |
-
# Ensure moviepy is installed
|
12 |
-
try:
|
13 |
-
import moviepy.editor
|
14 |
-
except ImportError:
|
15 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "moviepy"], check=True)
|
16 |
-
import moviepy.editor # Retry import after installation
|
17 |
-
|
18 |
-
# Ensure required packages are installed inside Hugging Face Spaces
|
19 |
-
subprocess.run(["pip", "install", "pytubefix", "moviepy", "transformers", "torchaudio"], check=True)
|
20 |
|
21 |
# Load Whisper model for transcription
|
22 |
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
@@ -24,32 +10,41 @@ asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-smal
|
|
24 |
# Load Summarization model
|
25 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
26 |
|
27 |
-
|
28 |
def process_youtube_link(youtube_url):
|
29 |
try:
|
30 |
# Download YouTube Video
|
31 |
yt = YouTube(youtube_url)
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Extract Audio
|
36 |
-
audio_path = "
|
37 |
video = VideoFileClip(video_path)
|
38 |
-
video.audio.write_audiofile(audio_path)
|
39 |
|
40 |
# Transcribe Audio
|
41 |
-
transcription = asr(audio_path)
|
42 |
transcribed_text = transcription["text"]
|
43 |
|
44 |
# Summarize Transcription
|
45 |
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
46 |
|
|
|
|
|
|
|
|
|
47 |
return transcribed_text, summary
|
48 |
|
49 |
except Exception as e:
|
50 |
return f"Error: {str(e)}", ""
|
51 |
|
52 |
-
|
53 |
# Create Gradio Interface
|
54 |
iface = gr.Interface(
|
55 |
fn=process_youtube_link,
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
|
|
3 |
from pytubefix import YouTube
|
4 |
from moviepy.editor import VideoFileClip
|
5 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Load Whisper model for transcription
|
8 |
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
|
|
10 |
# Load Summarization model
|
11 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
12 |
|
|
|
13 |
def process_youtube_link(youtube_url):
|
14 |
try:
|
15 |
# Download YouTube Video
|
16 |
yt = YouTube(youtube_url)
|
17 |
+
title = yt.title
|
18 |
+
print(f"Downloading: {title}")
|
19 |
+
|
20 |
+
video_stream = yt.streams.get_highest_resolution()
|
21 |
+
if not video_stream:
|
22 |
+
return "Error: No available video stream", ""
|
23 |
+
|
24 |
+
video_path = f"{title}.mp4"
|
25 |
+
video_stream.download(filename=video_path)
|
26 |
|
27 |
# Extract Audio
|
28 |
+
audio_path = f"{title}.wav"
|
29 |
video = VideoFileClip(video_path)
|
30 |
+
video.audio.write_audiofile(audio_path, codec="pcm_s16le")
|
31 |
|
32 |
# Transcribe Audio
|
33 |
+
transcription = asr(audio_path, return_timestamps=True)
|
34 |
transcribed_text = transcription["text"]
|
35 |
|
36 |
# Summarize Transcription
|
37 |
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
38 |
|
39 |
+
# Clean up files after processing
|
40 |
+
os.remove(video_path)
|
41 |
+
os.remove(audio_path)
|
42 |
+
|
43 |
return transcribed_text, summary
|
44 |
|
45 |
except Exception as e:
|
46 |
return f"Error: {str(e)}", ""
|
47 |
|
|
|
48 |
# Create Gradio Interface
|
49 |
iface = gr.Interface(
|
50 |
fn=process_youtube_link,
|