Spaces:
Sleeping
Sleeping
first stab at app
Browse files- app.py +134 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
+
from openai import OpenAI
|
7 |
+
from loguru import logger
|
8 |
+
|
9 |
+
# ================== CONFIGURATION ==================
|
10 |
+
st.set_page_config(page_title="Problem Deduplication Explorer", layout="wide")
|
11 |
+
|
12 |
+
# Load a pre-trained model for embeddings
|
13 |
+
MODEL_NAME = "all-MiniLM-L6-v2"
|
14 |
+
model = SentenceTransformer(MODEL_NAME)
|
15 |
+
|
16 |
+
# Load preloaded dataset
|
17 |
+
@st.cache_data
|
18 |
+
def load_data():
|
19 |
+
data = [
|
20 |
+
{
|
21 |
+
"uuid": "350d6834-3231-5d23-89e9-c7dc0f3fde0b",
|
22 |
+
"problem": "A function $f$ has the property that $f(3x-1)=x^2+x+1$ for all real numbers $x$. What is $f(5)$?",
|
23 |
+
"source": "aops-wiki",
|
24 |
+
"question_type": "MCQ",
|
25 |
+
"problem_type": "Algebra"
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"uuid": "b67e9cf9-8b3a-5a34-a118-4ce2aeb2c3d8",
|
29 |
+
"problem": "A function $f$ has the property that $f(3x-1)=x^2+x+1$ for all real numbers $x$. What is $f(5)$?",
|
30 |
+
"source": "MATH-train",
|
31 |
+
"question_type": "math-word-problem",
|
32 |
+
"problem_type": "Algebra"
|
33 |
+
},
|
34 |
+
]
|
35 |
+
return pd.DataFrame(data)
|
36 |
+
|
37 |
+
df = load_data()
|
38 |
+
|
39 |
+
# ================== FUNCTION DEFINITIONS ==================
|
40 |
+
def compute_embeddings(problems):
|
41 |
+
"""Compute sentence embeddings."""
|
42 |
+
return model.encode(problems, normalize_embeddings=True)
|
43 |
+
|
44 |
+
def find_similar_problems(df, similarity_threshold=0.9):
|
45 |
+
"""Find similar problems using cosine similarity."""
|
46 |
+
embeddings = compute_embeddings(df['problem'].tolist())
|
47 |
+
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
48 |
+
|
49 |
+
clusters = {}
|
50 |
+
for i in range(len(df)):
|
51 |
+
current_uuid = df["uuid"][i]
|
52 |
+
similar_items = [
|
53 |
+
(df["uuid"][j], similarity_matrix[i][j])
|
54 |
+
for j in range(i + 1, len(df))
|
55 |
+
if similarity_matrix[i][j] > similarity_threshold
|
56 |
+
]
|
57 |
+
|
58 |
+
if similar_items:
|
59 |
+
clusters[current_uuid] = similar_items
|
60 |
+
|
61 |
+
return clusters
|
62 |
+
|
63 |
+
def analyze_clusters(df, similarity_threshold=0.9):
|
64 |
+
"""Analyze duplicate problem clusters."""
|
65 |
+
clusters = find_similar_problems(df, similarity_threshold)
|
66 |
+
detailed_analysis = {}
|
67 |
+
|
68 |
+
for key, values in clusters.items():
|
69 |
+
base_row = df[df["uuid"] == key].iloc[0]
|
70 |
+
cluster_details = []
|
71 |
+
|
72 |
+
for val, score in values:
|
73 |
+
comparison_row = df[df["uuid"] == val].iloc[0]
|
74 |
+
|
75 |
+
column_differences = {}
|
76 |
+
for col in df.columns:
|
77 |
+
if col != "uuid":
|
78 |
+
column_differences[col] = {
|
79 |
+
'base': base_row[col],
|
80 |
+
'comparison': comparison_row[col],
|
81 |
+
'match': base_row[col] == comparison_row[col]
|
82 |
+
}
|
83 |
+
|
84 |
+
cluster_details.append({
|
85 |
+
'uuid': val,
|
86 |
+
'similarity_score': score,
|
87 |
+
'column_differences': column_differences,
|
88 |
+
})
|
89 |
+
|
90 |
+
detailed_analysis[key] = cluster_details
|
91 |
+
|
92 |
+
return detailed_analysis
|
93 |
+
|
94 |
+
# ================== STREAMLIT UI ==================
|
95 |
+
st.title("π Problem Deduplication Explorer")
|
96 |
+
|
97 |
+
st.sidebar.header("Settings")
|
98 |
+
similarity_threshold = st.sidebar.slider(
|
99 |
+
"Similarity Threshold", min_value=0.5, max_value=1.0, value=0.9, step=0.01
|
100 |
+
)
|
101 |
+
|
102 |
+
if st.sidebar.button("Run Deduplication Analysis"):
|
103 |
+
with st.spinner("Analyzing..."):
|
104 |
+
results = analyze_clusters(df, similarity_threshold)
|
105 |
+
|
106 |
+
st.success("Analysis Complete!")
|
107 |
+
|
108 |
+
st.subheader("π Duplicate Problem Clusters")
|
109 |
+
for base_uuid, cluster in results.items():
|
110 |
+
base_problem = df[df["uuid"] == base_uuid]["problem"].values[0]
|
111 |
+
st.markdown(f"### Problem: {base_problem}")
|
112 |
+
|
113 |
+
for entry in cluster:
|
114 |
+
similar_problem = df[df["uuid"] == entry["uuid"]]["problem"].values[0]
|
115 |
+
st.write(f"**Similar to:** {similar_problem}")
|
116 |
+
st.write(f"**Similarity Score:** {entry['similarity_score']:.4f}")
|
117 |
+
|
118 |
+
with st.expander("Show Column Differences"):
|
119 |
+
st.json(entry["column_differences"])
|
120 |
+
|
121 |
+
st.markdown("---")
|
122 |
+
|
123 |
+
# Export results
|
124 |
+
st.sidebar.download_button(
|
125 |
+
label="Download Results as JSON",
|
126 |
+
data=json.dumps(results, indent=2),
|
127 |
+
file_name="deduplication_results.json",
|
128 |
+
mime="application/json"
|
129 |
+
)
|
130 |
+
|
131 |
+
# ================== DATAFRAME DISPLAY ==================
|
132 |
+
st.subheader("π Explore the Dataset")
|
133 |
+
st.dataframe(df)
|
134 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
sentence-transformers
|
4 |
+
openai
|
5 |
+
loguru
|