Spaces:
Sleeping
Sleeping
better
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
import os
|
5 |
-
import
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
from loguru import logger
|
8 |
|
@@ -17,14 +17,15 @@ model = SentenceTransformer(MODEL_NAME)
|
|
17 |
@st.cache_data
|
18 |
def load_data():
|
19 |
file_path = "data/merged_dataset.csv.zip"
|
20 |
-
with
|
21 |
-
|
22 |
-
zip_ref.extractall("data/extracted")
|
23 |
-
df = pd.read_csv("data/extracted/merged_dataset.csv")
|
24 |
return df
|
25 |
|
26 |
df = load_data()
|
27 |
|
|
|
|
|
|
|
28 |
# ================== FUNCTION DEFINITIONS ==================
|
29 |
def compute_embeddings(problems):
|
30 |
"""Compute sentence embeddings."""
|
@@ -34,49 +35,38 @@ def find_similar_problems(df, similarity_threshold=0.9):
|
|
34 |
"""Find similar problems using cosine similarity."""
|
35 |
embeddings = compute_embeddings(df['problem'].tolist())
|
36 |
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
37 |
-
|
38 |
for i in range(len(df)):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
]
|
45 |
-
if similar_items:
|
46 |
-
clusters[current_uuid] = similar_items
|
47 |
-
return clusters
|
48 |
|
49 |
def analyze_clusters(df, similarity_threshold=0.9):
|
50 |
"""Analyze duplicate problem clusters."""
|
51 |
-
|
52 |
-
detailed_analysis =
|
53 |
-
for
|
54 |
-
base_row = df[df["uuid"] ==
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
}
|
74 |
-
cluster_details.append({
|
75 |
-
'uuid': val,
|
76 |
-
'similarity_score': float(score), # Convert float32 to float
|
77 |
-
'column_differences': column_differences,
|
78 |
-
})
|
79 |
-
detailed_analysis[key] = cluster_details
|
80 |
return detailed_analysis
|
81 |
|
82 |
# ================== STREAMLIT UI ==================
|
@@ -87,23 +77,58 @@ similarity_threshold = st.sidebar.slider(
|
|
87 |
"Similarity Threshold", min_value=0.5, max_value=1.0, value=0.9, step=0.01
|
88 |
)
|
89 |
|
|
|
|
|
|
|
|
|
90 |
if st.sidebar.button("Run Deduplication Analysis"):
|
91 |
with st.spinner("Analyzing..."):
|
92 |
results = analyze_clusters(df, similarity_threshold)
|
93 |
st.success("Analysis Complete!")
|
94 |
|
95 |
-
st.subheader("📊 Duplicate Problem
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
st.markdown(f"### Problem: {base_problem}")
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
st.
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Export results
|
108 |
st.sidebar.download_button(
|
109 |
label="Download Results as JSON",
|
@@ -111,8 +136,3 @@ if st.sidebar.button("Run Deduplication Analysis"):
|
|
111 |
file_name="deduplication_results.json",
|
112 |
mime="application/json"
|
113 |
)
|
114 |
-
|
115 |
-
# ================== DATAFRAME DISPLAY ==================
|
116 |
-
st.subheader("📄 Explore the Dataset")
|
117 |
-
st.dataframe(df)
|
118 |
-
|
|
|
2 |
import pandas as pd
|
3 |
import json
|
4 |
import os
|
5 |
+
import gzip
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
from loguru import logger
|
8 |
|
|
|
17 |
@st.cache_data
|
18 |
def load_data():
|
19 |
file_path = "data/merged_dataset.csv.zip"
|
20 |
+
with gzip.open(file_path, "rt") as f:
|
21 |
+
df = pd.read_csv(f)
|
|
|
|
|
22 |
return df
|
23 |
|
24 |
df = load_data()
|
25 |
|
26 |
+
display_columns = ["problem", "source", "question_type", "problem_type"]
|
27 |
+
df_filtered = df[display_columns]
|
28 |
+
|
29 |
# ================== FUNCTION DEFINITIONS ==================
|
30 |
def compute_embeddings(problems):
|
31 |
"""Compute sentence embeddings."""
|
|
|
35 |
"""Find similar problems using cosine similarity."""
|
36 |
embeddings = compute_embeddings(df['problem'].tolist())
|
37 |
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
|
38 |
+
pairs = []
|
39 |
for i in range(len(df)):
|
40 |
+
for j in range(i + 1, len(df)):
|
41 |
+
score = similarity_matrix[i][j]
|
42 |
+
if score > similarity_threshold:
|
43 |
+
pairs.append((df.iloc[i]["uuid"], df.iloc[j]["uuid"], float(score)))
|
44 |
+
return sorted(pairs, key=lambda x: x[2], reverse=True) # Sort by similarity score
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def analyze_clusters(df, similarity_threshold=0.9):
|
47 |
"""Analyze duplicate problem clusters."""
|
48 |
+
pairs = find_similar_problems(df, similarity_threshold)
|
49 |
+
detailed_analysis = []
|
50 |
+
for base_uuid, comp_uuid, score in pairs:
|
51 |
+
base_row = df[df["uuid"] == base_uuid].iloc[0]
|
52 |
+
comp_row = df[df["uuid"] == comp_uuid].iloc[0]
|
53 |
+
|
54 |
+
column_differences = {}
|
55 |
+
for col in df.columns:
|
56 |
+
if col != "uuid":
|
57 |
+
base_val = base_row[col]
|
58 |
+
comp_val = comp_row[col]
|
59 |
+
column_differences[col] = {
|
60 |
+
'base': base_val,
|
61 |
+
'comparison': comp_val,
|
62 |
+
'match': bool(base_val == comp_val)
|
63 |
+
}
|
64 |
+
detailed_analysis.append({
|
65 |
+
'base_uuid': base_uuid,
|
66 |
+
'comp_uuid': comp_uuid,
|
67 |
+
'similarity_score': score,
|
68 |
+
'column_differences': column_differences,
|
69 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return detailed_analysis
|
71 |
|
72 |
# ================== STREAMLIT UI ==================
|
|
|
77 |
"Similarity Threshold", min_value=0.5, max_value=1.0, value=0.9, step=0.01
|
78 |
)
|
79 |
|
80 |
+
# Display first 5 rows of dataset
|
81 |
+
st.subheader("📄 Explore the Dataset")
|
82 |
+
st.dataframe(df_filtered.head(5))
|
83 |
+
|
84 |
if st.sidebar.button("Run Deduplication Analysis"):
|
85 |
with st.spinner("Analyzing..."):
|
86 |
results = analyze_clusters(df, similarity_threshold)
|
87 |
st.success("Analysis Complete!")
|
88 |
|
89 |
+
st.subheader("📊 Duplicate Problem Pairs")
|
90 |
+
|
91 |
+
# Filtering options
|
92 |
+
sources = df["source"].unique().tolist()
|
93 |
+
question_types = df["question_type"].unique().tolist()
|
94 |
+
|
95 |
+
selected_source = st.sidebar.selectbox("Filter by Source", [None] + sources)
|
96 |
+
selected_qtype = st.sidebar.selectbox("Filter by Question Type", [None] + question_types)
|
97 |
+
|
98 |
+
if selected_source:
|
99 |
+
results = [r for r in results if df[df["uuid"] == r["base_uuid"]]["source"].values[0] == selected_source]
|
100 |
+
if selected_qtype:
|
101 |
+
results = [r for r in results if df[df["uuid"] == r["base_uuid"]]["question_type"].values[0] == selected_qtype]
|
102 |
+
|
103 |
+
# Display top 5 initially
|
104 |
+
num_display = 5
|
105 |
+
shown_results = results[:num_display]
|
106 |
+
|
107 |
+
for entry in shown_results:
|
108 |
+
base_problem = df[df["uuid"] == entry["base_uuid"]]["problem"].values[0]
|
109 |
+
similar_problem = df[df["uuid"] == entry["comp_uuid"]]["problem"].values[0]
|
110 |
+
|
111 |
st.markdown(f"### Problem: {base_problem}")
|
112 |
+
st.write(f"**Similar to:** {similar_problem}")
|
113 |
+
st.write(f"**Similarity Score:** {entry['similarity_score']:.4f}")
|
114 |
+
with st.expander("Show Column Differences"):
|
115 |
+
st.json(entry["column_differences"])
|
116 |
+
st.markdown("---")
|
117 |
+
|
118 |
+
if len(results) > num_display:
|
119 |
+
if st.button("Show More Results"):
|
120 |
+
extra_results = results[num_display:num_display * 2]
|
121 |
+
for entry in extra_results:
|
122 |
+
base_problem = df[df["uuid"] == entry["base_uuid"]]["problem"].values[0]
|
123 |
+
similar_problem = df[df["uuid"] == entry["comp_uuid"]]["problem"].values[0]
|
124 |
+
|
125 |
+
st.markdown(f"### Problem: {base_problem}")
|
126 |
+
st.write(f"**Similar to:** {similar_problem}")
|
127 |
+
st.write(f"**Similarity Score:** {entry['similarity_score']:.4f}")
|
128 |
+
with st.expander("Show Column Differences"):
|
129 |
+
st.json(entry["column_differences"])
|
130 |
+
st.markdown("---")
|
131 |
+
|
132 |
# Export results
|
133 |
st.sidebar.download_button(
|
134 |
label="Download Results as JSON",
|
|
|
136 |
file_name="deduplication_results.json",
|
137 |
mime="application/json"
|
138 |
)
|
|
|
|
|
|
|
|
|
|