math-dedup / app.py
dsleo's picture
fix filtering
74d7b60 verified
raw
history blame contribute delete
8.59 kB
import streamlit as st
import pandas as pd
import numpy as np
import json
import os
import time
import zipfile
from sentence_transformers import SentenceTransformer, util
from loguru import logger
# ================== CONFIGURATION ==================
st.set_page_config(
page_title="Problem Deduplication Explorer",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
if 'page_number' not in st.session_state:
st.session_state.page_number = 0
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
if 'filtered_results' not in st.session_state:
st.session_state.filtered_results = None
# Load a pre-trained model for embeddings with HF caching
@st.cache_resource
def load_model():
model_name = "sentence-transformers/all-MiniLM-L6-v2"
try:
return SentenceTransformer(model_name, cache_folder="/tmp/sentence_transformers")
except Exception as e:
st.error(f"Error loading model: {e}")
return None
model = load_model()
# Load preloaded dataset
@st.cache_data
def load_data():
try:
file_path = "data/merged_dataset.csv.zip"
with zipfile.ZipFile(file_path, 'r') as zip_ref:
with zip_ref.open(zip_ref.namelist()[0]) as file:
df = pd.read_csv(file)
return df[["uuid", "problem", "source", "question_type", "problem_type"]]
except Exception as e:
st.error(f"Error loading dataset: {e}")
return pd.DataFrame(columns=["uuid", "problem", "source", "question_type", "problem_type"])
# Cache embeddings computation with error handling
@st.cache_data
def compute_embeddings(problems):
"""Compute and cache sentence embeddings."""
try:
return model.encode(problems, normalize_embeddings=True)
except Exception as e:
st.error(f"Error computing embeddings: {e}")
return np.array([])
def find_similar_problems(df, similarity_threshold=0.9, progress_bar=None):
"""Find similar problems using cosine similarity, optimized for speed."""
if df.empty:
return []
embeddings = compute_embeddings(df['problem'].tolist())
if embeddings.size == 0:
return []
if progress_bar:
progress_bar.progress(0.33, "Computing similarity matrix...")
similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
if progress_bar:
progress_bar.progress(0.66, "Finding similar pairs...")
num_problems = len(df)
upper_triangle_indices = np.triu_indices(num_problems, k=1)
similarity_scores = similarity_matrix[upper_triangle_indices]
mask = similarity_scores > similarity_threshold
filtered_indices = np.where(mask)[0]
pairs = [
(df.iloc[upper_triangle_indices[0][i]]["uuid"],
df.iloc[upper_triangle_indices[1][i]]["uuid"],
float(similarity_scores[i]))
for i in filtered_indices
]
if progress_bar:
progress_bar.progress(1.0, "Analysis complete!")
time.sleep(0.5)
progress_bar.empty()
return sorted(pairs, key=lambda x: x[2], reverse=True)
@st.cache_data
def analyze_clusters(_df, pairs):
"""Analyze duplicate problem clusters with caching."""
if not pairs or _df.empty:
return []
detailed_analysis = []
for base_uuid, comp_uuid, score in pairs:
base_row = _df[_df["uuid"] == base_uuid].iloc[0]
comp_row = _df[_df["uuid"] == comp_uuid].iloc[0]
column_differences = {
col: {
'base': base_row[col],
'comparison': comp_row[col],
'match': bool(base_row[col] == comp_row[col])
}
for col in _df.columns if col != "uuid"
}
detailed_analysis.append({
'base_uuid': base_uuid,
'comp_uuid': comp_uuid,
'similarity_score': score,
'column_differences': column_differences,
})
return detailed_analysis
def apply_filters(results, df, selected_source, selected_qtype):
"""Apply filters to results."""
filtered = results.copy()
if selected_source:
filtered = [r for r in filtered if df[df["uuid"] == r["base_uuid"]]["source"].values[0] == selected_source]
if selected_qtype:
filtered = [r for r in filtered if df[df["uuid"] == r["base_uuid"]]["question_type"].values[0] == selected_qtype]
return filtered
def main():
st.title("πŸ” Problem Deduplication Explorer")
if model is None:
st.error("Failed to load the model. Please try again later.")
return
# Sidebar configuration
with st.sidebar:
st.header("Settings")
similarity_threshold = st.slider(
"Similarity Threshold",
min_value=0.5,
max_value=1.0,
value=0.9,
step=0.01,
help="Higher values mean more similar problems"
)
items_per_page = st.select_slider(
"Items per page",
options=[5, 10, 20, 50],
value=10,
help="Number of results to show per page"
)
# Load and display dataset
df = load_data()
if df.empty:
st.error("Failed to load the dataset. Please check if the data file exists in the correct location.")
return
with st.expander("πŸ“„ Dataset Preview", expanded=False):
st.dataframe(
df.head(),
use_container_width=True,
hide_index=True
)
# Analysis section
if st.sidebar.button("Run Deduplication Analysis", type="primary") or st.session_state.analysis_results is not None:
if st.session_state.analysis_results is None:
progress_bar = st.progress(0, "Starting analysis...")
pairs = find_similar_problems(df, similarity_threshold, progress_bar)
st.session_state.analysis_results = analyze_clusters(df, pairs)
results = st.session_state.analysis_results
if not results:
st.warning("No similar problems found with the current threshold.")
return
# Filtering options
sources = sorted(df["source"].unique().tolist())
question_types = sorted(df["question_type"].unique().tolist())
col1, col2 = st.columns(2)
with col1:
selected_source = st.selectbox("Filter by Source", [None] + sources)
with col2:
selected_qtype = st.selectbox("Filter by Question Type", [None] + question_types)
# Apply filters and store in session state
filtered_results = apply_filters(results, df, selected_source, selected_qtype)
st.session_state.filtered_results = filtered_results
if not filtered_results:
st.warning("No results found with the current filters.")
return
# Pagination
total_pages = (len(filtered_results) - 1) // items_per_page
st.session_state.page_number = min(st.session_state.page_number, total_pages)
col1, col2, col3 = st.columns([1, 3, 1])
with col1:
if st.button("← Previous", disabled=st.session_state.page_number <= 0):
st.session_state.page_number -= 1
with col2:
st.write(f"Page {st.session_state.page_number + 1} of {total_pages + 1}")
with col3:
if st.button("Next β†’", disabled=st.session_state.page_number >= total_pages):
st.session_state.page_number += 1
# Display results
start_idx = st.session_state.page_number * items_per_page
end_idx = start_idx + items_per_page
page_results = filtered_results[start_idx:end_idx]
for entry in page_results:
with st.container():
col1, col2 = st.columns([1, 1])
with col1:
st.markdown("### Original Problem")
st.info(df[df["uuid"] == entry["base_uuid"]]["problem"].values[0])
with col2:
st.markdown("### Similar Problem")
st.info(df[df["uuid"] == entry["comp_uuid"]]["problem"].values[0])
st.metric("Similarity Score", f"{entry['similarity_score']:.4f}")
with st.expander("Show Details"):
st.json(entry["column_differences"])
st.markdown("---")
if __name__ == "__main__":
main()