Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,50 +12,61 @@ import os
|
|
12 |
model = EsmModel.from_pretrained("facebook/esm1b_t33_650M_UR50S", output_hidden_states=True)
|
13 |
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
14 |
|
15 |
-
# Compute scaled
|
16 |
-
def compute_scaled_pca_scores(seq,
|
17 |
inputs = tokenizer(seq, return_tensors="pt")
|
18 |
with torch.no_grad():
|
19 |
outputs = model(**inputs)
|
20 |
-
embedding = outputs.last_hidden_state[0]
|
21 |
|
22 |
L = len(seq)
|
23 |
embedding = embedding[1:L+1] # remove CLS and EOS
|
24 |
|
25 |
-
|
26 |
-
pca = PCA(n_components=component + 1)
|
27 |
pca_result = pca.fit_transform(embedding.detach().cpu().numpy())
|
28 |
-
selected_component = pca_result[:, component]
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
parser = PDBParser(QUIET=True)
|
38 |
structure = parser.get_structure("prot", pdb_file.name)
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
for
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Gradio interface logic
|
55 |
-
def process(seq, pdb_file,
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Gradio UI
|
61 |
demo = gr.Interface(
|
@@ -63,11 +74,12 @@ demo = gr.Interface(
|
|
63 |
inputs=[
|
64 |
gr.Textbox(label="Input Protein Sequence (1-letter code)"),
|
65 |
gr.File(label="Upload PDB File", file_types=[".pdb"]),
|
66 |
-
gr.
|
67 |
],
|
68 |
-
outputs=gr.File(label="
|
69 |
-
title="ESM-1b PCA Component Projection
|
70 |
)
|
71 |
|
72 |
demo.launch()
|
73 |
|
|
|
|
12 |
model = EsmModel.from_pretrained("facebook/esm1b_t33_650M_UR50S", output_hidden_states=True)
|
13 |
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
14 |
|
15 |
+
# Compute PCA and return scaled values for selected components
|
16 |
+
def compute_scaled_pca_scores(seq, components):
|
17 |
inputs = tokenizer(seq, return_tensors="pt")
|
18 |
with torch.no_grad():
|
19 |
outputs = model(**inputs)
|
20 |
+
embedding = outputs.last_hidden_state[0]
|
21 |
|
22 |
L = len(seq)
|
23 |
embedding = embedding[1:L+1] # remove CLS and EOS
|
24 |
|
25 |
+
pca = PCA(n_components=max(components) + 1)
|
|
|
26 |
pca_result = pca.fit_transform(embedding.detach().cpu().numpy())
|
|
|
27 |
|
28 |
+
scaled_components = []
|
29 |
+
for c in components:
|
30 |
+
selected = pca_result[:, c]
|
31 |
+
scaled = (selected - selected.min()) / (selected.max() - selected.min()) * 100
|
32 |
+
scaled_components.append(scaled)
|
33 |
|
34 |
+
return scaled_components
|
35 |
+
|
36 |
+
# Inject scores into B-factor column and save each PDB separately
|
37 |
+
def inject_bfactors_and_save(pdb_file, scores_list, component_indices):
|
38 |
parser = PDBParser(QUIET=True)
|
39 |
structure = parser.get_structure("prot", pdb_file.name)
|
40 |
+
output_paths = []
|
41 |
+
|
42 |
+
for scores, idx in zip(scores_list, component_indices):
|
43 |
+
i = 0
|
44 |
+
for model in structure:
|
45 |
+
for chain in model:
|
46 |
+
for residue in chain:
|
47 |
+
if i >= len(scores):
|
48 |
+
break
|
49 |
+
for atom in residue:
|
50 |
+
atom.bfactor = float(scores[i])
|
51 |
+
i += 1
|
52 |
+
out_path = tempfile.NamedTemporaryFile(delete=False, suffix=f"_PC{idx}.pdb").name
|
53 |
+
io = PDBIO()
|
54 |
+
io.set_structure(structure)
|
55 |
+
io.save(out_path)
|
56 |
+
output_paths.append(out_path)
|
57 |
+
|
58 |
+
return output_paths
|
59 |
|
60 |
# Gradio interface logic
|
61 |
+
def process(seq, pdb_file, component_string):
|
62 |
+
try:
|
63 |
+
components = [int(c.strip()) for c in component_string.split(",") if c.strip().isdigit()]
|
64 |
+
except:
|
65 |
+
return "Error: Please input a comma-separated list of integers.", []
|
66 |
+
|
67 |
+
scores_list = compute_scaled_pca_scores(seq, components)
|
68 |
+
pdb_paths = inject_bfactors_and_save(pdb_file, scores_list, components)
|
69 |
+
return pdb_paths
|
70 |
|
71 |
# Gradio UI
|
72 |
demo = gr.Interface(
|
|
|
74 |
inputs=[
|
75 |
gr.Textbox(label="Input Protein Sequence (1-letter code)"),
|
76 |
gr.File(label="Upload PDB File", file_types=[".pdb"]),
|
77 |
+
gr.Textbox(label="Comma-separated PCA Components (e.g. 0,1,2)")
|
78 |
],
|
79 |
+
outputs=gr.File(label="Download PDBs with PCA Projections", file_types=[".pdb"], file_count="multiple"),
|
80 |
+
title="ESM-1b PCA Component Projection: Multi-PC Structural Mapping"
|
81 |
)
|
82 |
|
83 |
demo.launch()
|
84 |
|
85 |
+
|