Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,35 +5,61 @@ import gradio as gr
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
from transformers import AutoTokenizer, EsmModel
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
-
from Bio.PDB import PDBParser, PDBIO
|
9 |
-
from Bio.PDB.
|
10 |
import tempfile
|
11 |
import os
|
12 |
|
13 |
-
|
14 |
# Load ESM-1b model and tokenizer
|
15 |
model = EsmModel.from_pretrained("facebook/esm1b_t33_650M_UR50S", output_hidden_states=True)
|
16 |
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
17 |
|
18 |
-
|
|
|
19 |
inputs = tokenizer(seq, return_tensors="pt")
|
20 |
with torch.no_grad():
|
21 |
outputs = model(**inputs)
|
22 |
-
embedding = outputs.last_hidden_state[0]
|
23 |
|
24 |
L = len(seq)
|
25 |
-
embedding = embedding[1:L+1] #
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
sim_matrix = cosine_similarity(embedding.detach().cpu().numpy())
|
28 |
-
residue_scores = np.sum(sim_matrix, axis=1)
|
29 |
-
norm_scores = 100 * (residue_scores - np.min(residue_scores)) / (np.max(residue_scores) - np.min(residue_scores))
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return norm_scores
|
32 |
|
|
|
33 |
def inject_bfactors_into_pdb(pdb_file, scores):
|
34 |
parser = PDBParser(QUIET=True)
|
35 |
structure = parser.get_structure("prot", pdb_file.name)
|
36 |
-
|
37 |
i = 0
|
38 |
for model in structure:
|
39 |
for chain in model:
|
@@ -43,16 +69,15 @@ def inject_bfactors_into_pdb(pdb_file, scores):
|
|
43 |
for atom in residue:
|
44 |
atom.bfactor = float(scores[i])
|
45 |
i += 1
|
46 |
-
|
47 |
out_path = tempfile.NamedTemporaryFile(delete=False, suffix=".pdb").name
|
48 |
io = PDBIO()
|
49 |
io.set_structure(structure)
|
50 |
io.save(out_path)
|
51 |
-
|
52 |
return out_path
|
53 |
|
|
|
54 |
def process(seq, pdb_file):
|
55 |
-
scores =
|
56 |
pdb_with_scores = inject_bfactors_into_pdb(pdb_file, scores)
|
57 |
return pdb_with_scores
|
58 |
|
@@ -63,8 +88,8 @@ demo = gr.Interface(
|
|
63 |
gr.Textbox(label="Input Protein Sequence (1-letter code)"),
|
64 |
gr.File(label="Upload PDB File", file_types=[".pdb"])
|
65 |
],
|
66 |
-
outputs=gr.File(label="Modified PDB with Scores in B-factor Column"),
|
67 |
-
title="ESM-1b Residue Scoring
|
68 |
)
|
69 |
|
70 |
demo.launch()
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
from transformers import AutoTokenizer, EsmModel
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from Bio.PDB import PDBParser, PDBIO, DSSP
|
9 |
+
from Bio.PDB.Polypeptide import PPBuilder
|
10 |
import tempfile
|
11 |
import os
|
12 |
|
13 |
+
#-------------------------------------------------Analysis---------------------------------------------------------------------------------------------------------------
|
14 |
# Load ESM-1b model and tokenizer
|
15 |
model = EsmModel.from_pretrained("facebook/esm1b_t33_650M_UR50S", output_hidden_states=True)
|
16 |
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
17 |
|
18 |
+
# Compute per-residue cosine similarity scores (ASA-aware)
|
19 |
+
def compute_asa_filtered_scores(seq, pdb_path):
|
20 |
inputs = tokenizer(seq, return_tensors="pt")
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**inputs)
|
23 |
+
embedding = outputs.last_hidden_state[0]
|
24 |
|
25 |
L = len(seq)
|
26 |
+
embedding = embedding[1:L+1] # Remove CLS/EOS
|
27 |
|
28 |
+
# Parse structure and compute DSSP
|
29 |
+
parser = PDBParser(QUIET=True)
|
30 |
+
structure = parser.get_structure("prot", pdb_path)
|
31 |
+
model_struct = next(structure.get_models())
|
32 |
+
dssp = DSSP(model_struct, pdb_path)
|
33 |
+
|
34 |
+
# Extract rASA and match to sequence indices
|
35 |
+
rASA = []
|
36 |
+
for key in list(dssp.keys())[:L]:
|
37 |
+
asa = dssp[key][3] # absolute ASA
|
38 |
+
max_acc = dssp.residue_max_acc[dssp[key][1]]
|
39 |
+
rASA.append(asa / max_acc if max_acc > 0 else 0.0)
|
40 |
+
rASA = np.array(rASA)
|
41 |
+
|
42 |
+
# Bin into buried (<= 0.25) and exposed (> 0.25)
|
43 |
+
buried_idx = np.where(rASA <= 0.25)[0]
|
44 |
+
exposed_idx = np.where(rASA > 0.25)[0]
|
45 |
+
|
46 |
+
# Compute cosine similarity matrix
|
47 |
sim_matrix = cosine_similarity(embedding.detach().cpu().numpy())
|
|
|
|
|
48 |
|
49 |
+
# Sum similarities only within ASA bins
|
50 |
+
filtered_scores = np.zeros(L)
|
51 |
+
for i in range(L):
|
52 |
+
group = buried_idx if i in buried_idx else exposed_idx
|
53 |
+
filtered_scores[i] = np.sum(sim_matrix[i, group])
|
54 |
+
|
55 |
+
# Normalize
|
56 |
+
norm_scores = 100 * (filtered_scores - np.min(filtered_scores)) / (np.max(filtered_scores) - np.min(filtered_scores))
|
57 |
return norm_scores
|
58 |
|
59 |
+
# Inject scores into B-factor column
|
60 |
def inject_bfactors_into_pdb(pdb_file, scores):
|
61 |
parser = PDBParser(QUIET=True)
|
62 |
structure = parser.get_structure("prot", pdb_file.name)
|
|
|
63 |
i = 0
|
64 |
for model in structure:
|
65 |
for chain in model:
|
|
|
69 |
for atom in residue:
|
70 |
atom.bfactor = float(scores[i])
|
71 |
i += 1
|
|
|
72 |
out_path = tempfile.NamedTemporaryFile(delete=False, suffix=".pdb").name
|
73 |
io = PDBIO()
|
74 |
io.set_structure(structure)
|
75 |
io.save(out_path)
|
|
|
76 |
return out_path
|
77 |
|
78 |
+
# Combined Gradio interface
|
79 |
def process(seq, pdb_file):
|
80 |
+
scores = compute_asa_filtered_scores(seq, pdb_file.name)
|
81 |
pdb_with_scores = inject_bfactors_into_pdb(pdb_file, scores)
|
82 |
return pdb_with_scores
|
83 |
|
|
|
88 |
gr.Textbox(label="Input Protein Sequence (1-letter code)"),
|
89 |
gr.File(label="Upload PDB File", file_types=[".pdb"])
|
90 |
],
|
91 |
+
outputs=gr.File(label="Modified PDB with ASA-filtered Embedding Scores in B-factor Column"),
|
92 |
+
title="ESM-1b ASA-Aware Residue Scoring for Structural Visualization"
|
93 |
)
|
94 |
|
95 |
demo.launch()
|