Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -63,53 +63,63 @@ demo = gr.Interface(
|
|
63 |
demo.launch()
|
64 |
'''
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
nonpolar = set("AFLIVMYW")
|
69 |
polar = set("QERSDHKNT")
|
70 |
|
71 |
def classify_residues(seq):
|
72 |
-
return["nonpolar" if aa in nonpolar else "polar" if aa in polar else "other" for aa in seq]
|
73 |
|
74 |
def compute_cosine_heatmap(seq):
|
75 |
-
|
76 |
inputs = tokenizer(seq, return_tensors="pt")
|
77 |
with torch.no_grad():
|
78 |
outputs = model(**inputs)
|
79 |
-
embedding = outputs.last_hidden_state[0]
|
80 |
|
81 |
-
|
82 |
L = len(seq)
|
83 |
embedding = embedding[1:L+1]
|
84 |
|
85 |
-
|
86 |
sim_matrix = cosine_similarity(embedding.detach().cpu().numpy())
|
87 |
|
88 |
-
|
89 |
residue_classes = classify_residues(seq)
|
90 |
class_colors = {
|
91 |
-
"
|
92 |
-
"polar": "indigo",
|
93 |
-
"other": "steelblue"
|
94 |
}
|
95 |
row_colors = [class_colors[c] for c in residue_classes]
|
96 |
|
97 |
-
|
98 |
fig, ax = plt.subplots(figsize=(8, 6))
|
99 |
im = ax.imshow(sim_matrix, cmap="viridis")
|
100 |
-
fig.
|
101 |
-
ax.set_title("
|
102 |
-
ax.set_xlabel("
|
103 |
-
ax.set_ylabel("
|
104 |
|
105 |
-
|
106 |
for spine in ax.spines.values():
|
107 |
spine.set_visible(False)
|
108 |
ax.set_xticks(range(L))
|
109 |
ax.set_yticks(range(L))
|
110 |
ax.tick_params(length=0)
|
111 |
|
112 |
-
|
113 |
ax.set_xticklabels(residue_classes, rotation=90, fontsize=6)
|
114 |
ax.set_yticklabels(residue_classes, fontsize=6)
|
115 |
for label, color in zip(ax.get_xticklabels(), row_colors):
|
@@ -120,7 +130,7 @@ def compute_cosine_heatmap(seq):
|
|
120 |
fig.tight_layout()
|
121 |
return fig
|
122 |
|
123 |
-
|
124 |
demo = gr.Interface(
|
125 |
fn=compute_cosine_heatmap,
|
126 |
inputs=gr.Textbox(label="Input Protein Sequence (1-letter code)"),
|
|
|
63 |
demo.launch()
|
64 |
'''
|
65 |
|
66 |
+
import torch
|
67 |
+
import gradio as gr
|
68 |
+
import matplotlib.pyplot as plt
|
69 |
+
import numpy as np
|
70 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
71 |
+
from transformers import AutoTokenizer, EsmModel
|
72 |
+
|
73 |
+
# Load model
|
74 |
+
model = EsmModel.from_pretrained("facebook/esm1b_t33_650M_UR50S", output_hidden_states=True)
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")
|
76 |
+
|
77 |
+
# Define hydrophobicity classification
|
78 |
nonpolar = set("AFLIVMYW")
|
79 |
polar = set("QERSDHKNT")
|
80 |
|
81 |
def classify_residues(seq):
|
82 |
+
return ["nonpolar" if aa in nonpolar else "polar" if aa in polar else "other" for aa in seq]
|
83 |
|
84 |
def compute_cosine_heatmap(seq):
|
85 |
+
# Tokenize
|
86 |
inputs = tokenizer(seq, return_tensors="pt")
|
87 |
with torch.no_grad():
|
88 |
outputs = model(**inputs)
|
89 |
+
embedding = outputs.last_hidden_state[0] # shape (L, 1280)
|
90 |
|
91 |
+
# Remove [CLS] and [EOS] if present
|
92 |
L = len(seq)
|
93 |
embedding = embedding[1:L+1]
|
94 |
|
95 |
+
# Cosine similarity matrix
|
96 |
sim_matrix = cosine_similarity(embedding.detach().cpu().numpy())
|
97 |
|
98 |
+
# Residue classification
|
99 |
residue_classes = classify_residues(seq)
|
100 |
class_colors = {
|
101 |
+
"nonpolar": "magenta",
|
102 |
+
"polar": "indigo",
|
103 |
+
"other": "steelblue"
|
104 |
}
|
105 |
row_colors = [class_colors[c] for c in residue_classes]
|
106 |
|
107 |
+
# Plot heatmap
|
108 |
fig, ax = plt.subplots(figsize=(8, 6))
|
109 |
im = ax.imshow(sim_matrix, cmap="viridis")
|
110 |
+
fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
|
111 |
+
ax.set_title("Residue–Residue Cosine Similarity")
|
112 |
+
ax.set_xlabel("Residue Index")
|
113 |
+
ax.set_ylabel("Residue Index")
|
114 |
|
115 |
+
# Add colored ticks for class annotation
|
116 |
for spine in ax.spines.values():
|
117 |
spine.set_visible(False)
|
118 |
ax.set_xticks(range(L))
|
119 |
ax.set_yticks(range(L))
|
120 |
ax.tick_params(length=0)
|
121 |
|
122 |
+
# Color-code labels
|
123 |
ax.set_xticklabels(residue_classes, rotation=90, fontsize=6)
|
124 |
ax.set_yticklabels(residue_classes, fontsize=6)
|
125 |
for label, color in zip(ax.get_xticklabels(), row_colors):
|
|
|
130 |
fig.tight_layout()
|
131 |
return fig
|
132 |
|
133 |
+
# Gradio UI
|
134 |
demo = gr.Interface(
|
135 |
fn=compute_cosine_heatmap,
|
136 |
inputs=gr.Textbox(label="Input Protein Sequence (1-letter code)"),
|