File size: 1,700 Bytes
09c54b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#-------------------------------------------------------libraries------------------------------------------------------------------------------------
import torch
import gradio as gr
import matplotlib.pyplot as plt
from transformers import AutoTokenizer, EsmModel
from sklearn.decomposition import PCA

#----------------------------------------------------Analysis------------------------------------------------------------------------------------
#--load model and tokenizer
model = EsmModel.from_pretrained("facebook/esm1b_t33_650M_UR50S", output_hidden_states=True)
tokenizer = AutoTokenizer.from_pretrained("facebook/esm1b_t33_650M_UR50S")

#--task to execute
def extract_and_plot(seq, layer=-1):
    #--preprocess sequence
    inputs = tokenizer(seq, return_tensors="pt")

    #--forward pass
    with torch.no_grad():
        outputs = model(**inputs)
        hidden_states = outputs.hidden_states   #--> tuple: (layer0, ..., layer_final)

    #--select hidden state from specified layer
    if layer == 1:
        embedding = hidden_states[-1][0]    #--> (seq_len, hidden_dim)
    else:
        embedding = hidden_states[layer][0]

    #--PCA
    pca = PCA(n_components=2)
    coords = pca.fit_transform(embedding.numpy())

    #--plot
    plt.figure(figsize=(6, 4))
    plt.scatter(coords[:, 0], coords[:, 1])
    plt.title(f"PCA of esm1b embeddings (layer {layer})")
    plt.xlabel("PCA1")
    plt.ylabel("PCA2")
    plt.tight_layout()

    return plt

demo = gr.Interface(
    fn=extract_and_plot,
    inputs=[
        gr.Textbox(label="Protein Sequence"),
        gr.Slider(minimum=0, maximum=33, step=1, value=33, label="Layer (-1 = final)")
    ],
    outputs=gr.Plot()
)

demo.launch()