File size: 1,959 Bytes
d85fde4
1eb87a5
d160dc6
1eb87a5
 
 
4a3fe77
 
 
d85fde4
 
 
 
 
 
 
d160dc6
 
d85fde4
 
 
d160dc6
 
 
d85fde4
 
 
d160dc6
4a3fe77
 
d160dc6
d85fde4
d160dc6
 
 
 
 
4a3fe77
d160dc6
 
 
4a3fe77
d160dc6
4a3fe77
d160dc6
 
 
 
 
 
 
4a3fe77
d160dc6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from functools import partial
import jax
import jax.numpy as jnp
import numpy as np


def repeat_vmap(fun, in_axes=None):
    if in_axes is None:
        in_axes = [0]
    for axes in in_axes:
        fun = jax.vmap(fun, in_axes=axes)
    return fun


def make_grid(patch_size: int | tuple[int, int]):
    if isinstance(patch_size, int):
        patch_size = (max(1, patch_size), max(1, patch_size))

    offset_h, offset_w = 1 / (2 * np.array(patch_size))
    space_h = np.linspace(-0.5 + offset_h, 0.5 - offset_h, patch_size[0])
    space_w = np.linspace(-0.5 + offset_w, 0.5 - offset_w, patch_size[1])

    grid = np.stack(np.meshgrid(space_h, space_w, indexing='ij'), axis=-1)
    return grid[np.newaxis, ...]  # Adiciona dimensão de batch


def interpolate_grid(coords, grid, order=0):
    """Args:
        coords: Tensor de shape (B, H, W, 2) ou (H, W, 2)
        grid: Tensor de shape (B, H', W', C)
        order: default 0
    """
    try:
        # Converter para array JAX e ajustar dimensões
        coords = jnp.asarray(coords)
        while coords.ndim < 4:
            coords = coords[jnp.newaxis, ...]

        # Verificação final de dimensões
        if coords.shape[-1] != 2 or coords.ndim != 4:
            raise ValueError(f"Formato inválido: {coords.shape}. Esperado (B, H, W, 2)")

        # Transformação de coordenadas
        coords = coords.transpose((0, 3, 1, 2))
        coords = coords.at[:, 0].set(coords[:, 0] * grid.shape[-3] + (grid.shape[-3] - 1) / 2)
        coords = coords.at[:, 1].set(coords[:, 1] * grid.shape[-2] + (grid.shape[-2] - 1) / 2)

        # Função de interpolação vetorizada
        map_fn = jax.vmap(jax.vmap(
            partial(jax.scipy.ndimage.map_coordinates, order=order, mode='nearest'),
            in_axes=(2, None),
            out_axes=2
        ))
        return map_fn(grid, coords)

    except Exception as e:
        raise RuntimeError(f"Falha na interpolação: {str(e)}") from e