Added vision analyzer tool / agent
Browse files- agents/llama_index_agent.py +20 -1
- requirements.txt +2 -1
- tools/multimedia_tools.py +202 -22
agents/llama_index_agent.py
CHANGED
@@ -11,6 +11,8 @@ from llama_index.llms.anthropic import Anthropic
|
|
11 |
# In your GaiaAgent class initialization, add these imports at the top
|
12 |
from tools.multimedia_tools import (
|
13 |
transcribe_audio_tool,
|
|
|
|
|
14 |
)
|
15 |
|
16 |
from tools.web_tools import (
|
@@ -72,7 +74,9 @@ class GaiaAgent(ReActAgent):
|
|
72 |
tavily_tool.search,
|
73 |
transcribe_audio_tool,
|
74 |
execute_python_file_tool,
|
75 |
-
csv_excel_reader_tool
|
|
|
|
|
76 |
]
|
77 |
|
78 |
# Use default system prompt if not provided
|
@@ -158,6 +162,21 @@ class GaiaAgent(ReActAgent):
|
|
158 |
3. Extract the specific information requested from the transcript (e.g., ingredients, page numbers, names)
|
159 |
4. For audio tasks, ensure you've captured all relevant spoken content, including names, facts, or quotes as needed
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
## HANDLING CSV OR EXCEL DATA TASKS
|
162 |
When dealing with CSV files or data analysis tasks:
|
163 |
1. Check if a CSV file path is mentioned in the question or available in the context
|
|
|
11 |
# In your GaiaAgent class initialization, add these imports at the top
|
12 |
from tools.multimedia_tools import (
|
13 |
transcribe_audio_tool,
|
14 |
+
encode_image_tool,
|
15 |
+
vision_analyzer_tool
|
16 |
)
|
17 |
|
18 |
from tools.web_tools import (
|
|
|
74 |
tavily_tool.search,
|
75 |
transcribe_audio_tool,
|
76 |
execute_python_file_tool,
|
77 |
+
csv_excel_reader_tool,
|
78 |
+
encode_image_tool,
|
79 |
+
vision_analyzer_tool
|
80 |
]
|
81 |
|
82 |
# Use default system prompt if not provided
|
|
|
162 |
3. Extract the specific information requested from the transcript (e.g., ingredients, page numbers, names)
|
163 |
4. For audio tasks, ensure you've captured all relevant spoken content, including names, facts, or quotes as needed
|
164 |
|
165 |
+
## HANDLING IMAGE ANALYSIS TASKS
|
166 |
+
When dealing with image files for visual analysis:
|
167 |
+
1. First, check if an image file path is mentioned in the question or available in the context
|
168 |
+
2. For image analysis, follow this two-step process:
|
169 |
+
a. Use the encode_image_to_base64 tool to convert the image to a base64 string
|
170 |
+
b. Pass the image path and a specific analysis question to analyze_image_with_vision
|
171 |
+
3. The vision analyzer can perform various visual analysis tasks:
|
172 |
+
- General image description: "Describe this image in detail"
|
173 |
+
- Specific information extraction: "What text appears in this image?"
|
174 |
+
- Visual problem solving: "How many people are in this image?"
|
175 |
+
- Object identification: "What brands/products are visible in this image?"
|
176 |
+
4. Be specific in your analysis requests to get the most relevant information
|
177 |
+
5. For tasks that require both text extraction and visual analysis, prioritize using the vision analyzer
|
178 |
+
6. Always document your analysis and include relevant details in your notes to the writer_agent
|
179 |
+
|
180 |
## HANDLING CSV OR EXCEL DATA TASKS
|
181 |
When dealing with CSV files or data analysis tasks:
|
182 |
1. Check if a CSV file path is mentioned in the question or available in the context
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ llama-index-llms-anthropic
|
|
7 |
llama-index-llms-openai
|
8 |
llama-index-readers-whisper
|
9 |
llama-index-readers-file
|
10 |
-
openpyxl
|
|
|
|
7 |
llama-index-llms-openai
|
8 |
llama-index-readers-whisper
|
9 |
llama-index-readers-file
|
10 |
+
openpyxl
|
11 |
+
Pillow
|
tools/multimedia_tools.py
CHANGED
@@ -4,29 +4,14 @@ from llama_index.readers.whisper import WhisperReader
|
|
4 |
from llama_index.core.tools import FunctionTool
|
5 |
from llama_index.core import SimpleDirectoryReader
|
6 |
from llama_index.readers.file import (
|
7 |
-
|
8 |
-
HWPReader,
|
9 |
-
PDFReader,
|
10 |
-
EpubReader,
|
11 |
-
FlatReader,
|
12 |
-
HTMLTagReader,
|
13 |
-
ImageCaptionReader,
|
14 |
-
ImageReader,
|
15 |
-
ImageVisionLLMReader,
|
16 |
-
IPYNBReader,
|
17 |
-
MarkdownReader,
|
18 |
-
MboxReader,
|
19 |
-
PptxReader,
|
20 |
-
PandasCSVReader,
|
21 |
-
VideoAudioReader,
|
22 |
-
UnstructuredReader,
|
23 |
-
PyMuPDFReader,
|
24 |
-
ImageTabularChartReader,
|
25 |
-
XMLReader,
|
26 |
-
PagedCSVReader,
|
27 |
-
CSVReader,
|
28 |
-
RTFReader,
|
29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
class WhisperTranscriber:
|
32 |
"""Class for transcribing audio using OpenAI's Whisper model."""
|
@@ -71,4 +56,199 @@ transcribe_audio_tool = FunctionTool.from_defaults(
|
|
71 |
name="transcribe_audio",
|
72 |
description="Transcribes speech from an audio file to text using OpenAI's Whisper model. Provide the full path to the audio file.",
|
73 |
fn=whisper_transcriber.transcribe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
)
|
|
|
4 |
from llama_index.core.tools import FunctionTool
|
5 |
from llama_index.core import SimpleDirectoryReader
|
6 |
from llama_index.readers.file import (
|
7 |
+
ImageReader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
)
|
9 |
+
import base64
|
10 |
+
import sys
|
11 |
+
import traceback
|
12 |
+
from PIL import Image
|
13 |
+
from llama_index.llms.openai import OpenAI
|
14 |
+
from llama_index.llms.anthropic import Anthropic
|
15 |
|
16 |
class WhisperTranscriber:
|
17 |
"""Class for transcribing audio using OpenAI's Whisper model."""
|
|
|
56 |
name="transcribe_audio",
|
57 |
description="Transcribes speech from an audio file to text using OpenAI's Whisper model. Provide the full path to the audio file.",
|
58 |
fn=whisper_transcriber.transcribe
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def encode_image_to_base64(file_path: str) -> str:
|
63 |
+
"""
|
64 |
+
Reads an image file and encodes it to a base64 string.
|
65 |
+
|
66 |
+
This function focuses exclusively on generating a base64 encoded string from an image file.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
file_path (str): Path to the image file to be encoded
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
str: The base64 encoded string of the image
|
73 |
+
|
74 |
+
Raises:
|
75 |
+
FileNotFoundError: If the specified file doesn't exist
|
76 |
+
ValueError: If the file has an unsupported extension
|
77 |
+
|
78 |
+
Examples:
|
79 |
+
>>> base64_data = encode_image_to_base64("data/photo.jpg")
|
80 |
+
"""
|
81 |
+
# Check if file exists
|
82 |
+
if not os.path.exists(file_path):
|
83 |
+
raise FileNotFoundError(f"File not found at {file_path}")
|
84 |
+
|
85 |
+
# Get file extension
|
86 |
+
file_ext = os.path.splitext(file_path)[1].lower()
|
87 |
+
supported_formats = ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.webp']
|
88 |
+
|
89 |
+
if file_ext not in supported_formats:
|
90 |
+
raise ValueError(f"Unsupported file extension: {file_ext}. Supported extensions are: {', '.join(supported_formats)}")
|
91 |
+
|
92 |
+
with open(file_path, "rb") as image_file:
|
93 |
+
encoded_string = base64.b64encode(image_file.read())
|
94 |
+
base64_image = encoded_string.decode('utf-8')
|
95 |
+
|
96 |
+
return base64_image
|
97 |
+
|
98 |
+
# Create a function tool for image encoding
|
99 |
+
encode_image_tool = FunctionTool.from_defaults(
|
100 |
+
name="encode_image_to_base64",
|
101 |
+
description="Reads an image file and converts it to a base64 encoded string. Use this tool to prepare images for vision analysis.",
|
102 |
+
fn=encode_image_to_base64
|
103 |
+
)
|
104 |
+
|
105 |
+
class VisionAnalyzerAgent:
|
106 |
+
"""
|
107 |
+
A specialized agent for analyzing images using vision models.
|
108 |
+
|
109 |
+
This agent can process images, analyze their content, and provide detailed descriptions
|
110 |
+
or answer questions about the visual elements.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
model_provider: str = "openai",
|
116 |
+
model_name: str = "gpt-4o",
|
117 |
+
api_key: Optional[str] = None,
|
118 |
+
**kwargs
|
119 |
+
):
|
120 |
+
"""
|
121 |
+
Initialize a VisionAnalyzerAgent.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
model_provider: The LLM provider to use ("anthropic" or "openai")
|
125 |
+
model_name: The specific model name to use
|
126 |
+
api_key: API key for the provider (defaults to environment variable)
|
127 |
+
**kwargs: Additional parameters for the model
|
128 |
+
"""
|
129 |
+
self.model_provider = model_provider.lower()
|
130 |
+
self.model_name = model_name
|
131 |
+
self.api_key = api_key
|
132 |
+
|
133 |
+
# Set up the vision model client
|
134 |
+
if self.model_provider == "anthropic":
|
135 |
+
self.client = Anthropic(api_key=api_key or os.getenv("ANTHROPIC_API_KEY"))
|
136 |
+
elif self.model_provider == "openai":
|
137 |
+
self.client = OpenAI(api_key=api_key or os.getenv("OPENAI_API_KEY"))
|
138 |
+
else:
|
139 |
+
raise ValueError(f"Unsupported model provider: {model_provider}. "
|
140 |
+
f"Supported providers are: anthropic, openai")
|
141 |
+
|
142 |
+
def analyze_image(self, image_base64: str, query: str = "Describe this image in detail.") -> str:
|
143 |
+
"""
|
144 |
+
Analyze an image using the vision model.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
image_base64: Base64 encoded image data
|
148 |
+
query: The question or instruction for image analysis
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
str: The analysis result from the vision model
|
152 |
+
"""
|
153 |
+
# Prepare the image for the appropriate model
|
154 |
+
if self.model_provider == "anthropic":
|
155 |
+
# Handle Anthropic Claude models
|
156 |
+
try:
|
157 |
+
# Determine MIME type based on image data
|
158 |
+
mime_type = "image/jpeg" # Default
|
159 |
+
if image_base64.startswith('/9j/'):
|
160 |
+
mime_type = "image/jpeg"
|
161 |
+
elif image_base64.startswith('iVBORw0KGgo'):
|
162 |
+
mime_type = "image/png"
|
163 |
+
|
164 |
+
# Create the message with image and text
|
165 |
+
response = self.client.messages.create(
|
166 |
+
model=self.model_name,
|
167 |
+
max_tokens=1024,
|
168 |
+
messages=[
|
169 |
+
{
|
170 |
+
"role": "user",
|
171 |
+
"content": [
|
172 |
+
{
|
173 |
+
"type": "text",
|
174 |
+
"text": query
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"type": "image",
|
178 |
+
"source": {
|
179 |
+
"type": "base64",
|
180 |
+
"media_type": mime_type,
|
181 |
+
"data": image_base64
|
182 |
+
}
|
183 |
+
}
|
184 |
+
]
|
185 |
+
}
|
186 |
+
]
|
187 |
+
)
|
188 |
+
return response.content[0].text
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
return f"Error analyzing image with Anthropic: {str(e)}"
|
192 |
+
|
193 |
+
elif self.model_provider == "openai":
|
194 |
+
# Handle OpenAI GPT-4 Vision models
|
195 |
+
try:
|
196 |
+
response = self.client.chat.completions.create(
|
197 |
+
model=self.model_name,
|
198 |
+
max_tokens=1024,
|
199 |
+
messages=[
|
200 |
+
{
|
201 |
+
"role": "user",
|
202 |
+
"content": [
|
203 |
+
{
|
204 |
+
"type": "text",
|
205 |
+
"text": query
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"type": "image_url",
|
209 |
+
"image_url": {
|
210 |
+
"url": f"data:image/jpeg;base64,{image_base64}"
|
211 |
+
}
|
212 |
+
}
|
213 |
+
]
|
214 |
+
}
|
215 |
+
]
|
216 |
+
)
|
217 |
+
return response.choices[0].message.content
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
return f"Error analyzing image with OpenAI: {str(e)}"
|
221 |
+
|
222 |
+
else:
|
223 |
+
return "Unsupported model provider"
|
224 |
+
|
225 |
+
# Create a function tool for the vision analyzer
|
226 |
+
def analyze_image_with_vision(image_path: str, query: str = "Describe this image in detail.") -> str:
|
227 |
+
"""
|
228 |
+
Analyze an image using a vision-enabled model.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
image_path: Path to the image file
|
232 |
+
query: The question or instruction for image analysis
|
233 |
+
|
234 |
+
Returns:
|
235 |
+
str: The analysis result from the vision model
|
236 |
+
"""
|
237 |
+
try:
|
238 |
+
# Encode the image to base64
|
239 |
+
base64_image = encode_image_to_base64(image_path)
|
240 |
+
|
241 |
+
# Create a vision analyzer agent and analyze the image
|
242 |
+
vision_agent = VisionAnalyzerAgent()
|
243 |
+
result = vision_agent.analyze_image(base64_image, query)
|
244 |
+
|
245 |
+
return result
|
246 |
+
except Exception as e:
|
247 |
+
return f"Error analyzing image: {str(e)}"
|
248 |
+
|
249 |
+
# Create a function tool for vision analysis
|
250 |
+
vision_analyzer_tool = FunctionTool.from_defaults(
|
251 |
+
name="analyze_image_with_vision",
|
252 |
+
description="Analyzes images using a vision-enabled model. Provide the image path and an optional query/instruction.",
|
253 |
+
fn=analyze_image_with_vision
|
254 |
)
|