Upload 2 files
Browse files- app.py +115 -0
- problem_country_encoder.pkl +3 -0
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import pandas as pd
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from model import VotePredictor # <-- make sure this matches your model file
|
8 |
+
|
9 |
+
# Load models
|
10 |
+
main_model = VotePredictor(country_count=193)
|
11 |
+
main_model.load_state_dict(torch.load("vote_predictor_epoch27.pt", map_location="cpu"))
|
12 |
+
main_model.eval()
|
13 |
+
|
14 |
+
problem_model = VotePredictor(country_count=46)
|
15 |
+
problem_model.load_state_dict(torch.load("problem_country_model.pt", map_location="cpu"))
|
16 |
+
problem_model.eval()
|
17 |
+
|
18 |
+
# Load country encoder
|
19 |
+
with open("country_encoder.pkl", "rb") as f:
|
20 |
+
country_encoder = pickle.load(f)
|
21 |
+
|
22 |
+
# Vectorizer
|
23 |
+
vectorizer = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
24 |
+
|
25 |
+
# Define problem countries (same as used during training)
|
26 |
+
problem_countries = [
|
27 |
+
'SURINAME',
|
28 |
+
'TURKMENISTAN',
|
29 |
+
'MARSHALL ISLANDS',
|
30 |
+
'MYANMAR',
|
31 |
+
'GABON',
|
32 |
+
'CENTRAL AFRICAN REPUBLIC',
|
33 |
+
'ISRAEL',
|
34 |
+
'REPUBLIC OF THE CONGO',
|
35 |
+
'LIBERIA',
|
36 |
+
'SOMALIA',
|
37 |
+
'CANADA',
|
38 |
+
"LAO PEOPLE'S DEMOCRATIC REPUBLIC",
|
39 |
+
'TUVALU',
|
40 |
+
'DEMOCRATIC REPUBLIC OF THE CONGO',
|
41 |
+
'MONTENEGRO',
|
42 |
+
'VANUATU',
|
43 |
+
'UNITED STATES',
|
44 |
+
'TÜRKİYE',
|
45 |
+
'SEYCHELLES',
|
46 |
+
'SERBIA',
|
47 |
+
'CABO VERDE',
|
48 |
+
'VENEZUELA (BOLIVARIAN REPUBLIC OF)',
|
49 |
+
'KIRIBATI',
|
50 |
+
'IRAN (ISLAMIC REPUBLIC OF)',
|
51 |
+
'SOUTH SUDAN',
|
52 |
+
'ALBANIA',
|
53 |
+
'CZECHIA',
|
54 |
+
'DOMINICA',
|
55 |
+
'SAO TOME AND PRINCIPE',
|
56 |
+
'ESWATINI',
|
57 |
+
'CHAD',
|
58 |
+
'EQUATORIAL GUINEA',
|
59 |
+
'GAMBIA',
|
60 |
+
'LIBYA',
|
61 |
+
"CÔTE D'IVOIRE",
|
62 |
+
'SAINT CHRISTOPHER AND NEVIS',
|
63 |
+
'RWANDA',
|
64 |
+
'TONGA',
|
65 |
+
'NIGER',
|
66 |
+
'MICRONESIA (FEDERATED STATES OF)',
|
67 |
+
'SYRIAN ARAB REPUBLIC',
|
68 |
+
'NAURU',
|
69 |
+
'PALAU',
|
70 |
+
'NORTH MACEDONIA',
|
71 |
+
'NETHERLANDS',
|
72 |
+
'BOLIVIA (PLURINATIONAL STATE OF)'
|
73 |
+
]
|
74 |
+
|
75 |
+
# Vote function
|
76 |
+
def predict_votes(resolution_text):
|
77 |
+
# Vectorize once
|
78 |
+
vec = vectorizer.encode([resolution_text])
|
79 |
+
x_tensor = torch.tensor(vec, dtype=torch.float32)
|
80 |
+
|
81 |
+
countries = []
|
82 |
+
votes = []
|
83 |
+
|
84 |
+
for country in country_encoder.classes_:
|
85 |
+
country_id = country_encoder.transform([country])[0]
|
86 |
+
c_tensor = torch.tensor([country_id], dtype=torch.long)
|
87 |
+
|
88 |
+
model = problem_model if country in problem_countries else main_model
|
89 |
+
|
90 |
+
with torch.no_grad():
|
91 |
+
logit = model(x_tensor, c_tensor).squeeze()
|
92 |
+
prob = torch.sigmoid(logit).item()
|
93 |
+
vote = "✅ Yes" if prob > 0.5 else "❌ Not Yes"
|
94 |
+
|
95 |
+
countries.append(country)
|
96 |
+
votes.append(vote)
|
97 |
+
|
98 |
+
df = pd.DataFrame({
|
99 |
+
"Country": countries,
|
100 |
+
"Vote": votes
|
101 |
+
}).sort_values("Country")
|
102 |
+
|
103 |
+
return df
|
104 |
+
|
105 |
+
# Gradio UI
|
106 |
+
iface = gr.Interface(
|
107 |
+
fn=predict_votes,
|
108 |
+
inputs=gr.Textbox(lines=15, label="Paste UN Resolution Text Here"),
|
109 |
+
outputs=gr.Dataframe(label="Predicted Votes by Country"),
|
110 |
+
title="UN Resolution Vote Predictor",
|
111 |
+
description="This model predicts how each UN country will vote on a given resolution based on the text. Uses BERT embeddings and two models: one for normal countries, one for chaos monkeys.",
|
112 |
+
live=False
|
113 |
+
)
|
114 |
+
|
115 |
+
iface.launch()
|
problem_country_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:805fcaa77f0176fa8a3745700ddafde4df90278ed1bcfacb83353423dba4bb75
|
3 |
+
size 1038
|