Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,98 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
-
import pickle
|
5 |
-
import pandas as pd
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
with
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
'
|
45 |
-
'
|
46 |
-
'
|
47 |
-
'
|
48 |
-
'
|
49 |
-
'KIRIBATI',
|
50 |
-
'
|
51 |
-
'
|
52 |
-
'
|
53 |
-
'
|
54 |
-
'
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
df = pd.DataFrame({
|
99 |
-
"Country": countries,
|
100 |
-
"Vote": votes
|
101 |
-
}).sort_values("Country")
|
102 |
-
|
103 |
-
return df
|
104 |
-
|
105 |
-
# Gradio UI
|
106 |
-
iface = gr.Interface(
|
107 |
-
fn=predict_votes,
|
108 |
-
inputs=gr.Textbox(lines=15, label="Paste UN Resolution Text Here"),
|
109 |
-
outputs=gr.Dataframe(label="Predicted Votes by Country"),
|
110 |
-
title="UN Resolution Vote Predictor",
|
111 |
-
description="This model predicts how each UN country will vote on a given resolution based on the text. Uses BERT embeddings and two models: one for normal countries, one for chaos monkeys.",
|
112 |
-
live=False
|
113 |
-
)
|
114 |
-
|
115 |
iface.launch()
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import pandas as pd
|
6 |
+
from model import VotePredictor
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
|
10 |
+
|
11 |
+
# === Vectorizer wrapper (replaces sentence-transformers) ===
|
12 |
+
class BertVectorizer:
|
13 |
+
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
self.model = AutoModel.from_pretrained(model_name)
|
16 |
+
self.model.eval()
|
17 |
+
|
18 |
+
def encode(self, text):
|
19 |
+
with torch.no_grad():
|
20 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
21 |
+
outputs = self.model(**inputs)
|
22 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :]
|
23 |
+
return cls_embedding.squeeze().numpy()
|
24 |
+
|
25 |
+
|
26 |
+
# === Load Models ===
|
27 |
+
main_model = VotePredictor(country_count=193)
|
28 |
+
main_model.load_state_dict(torch.load("vote_predictor_epoch27.pt", map_location="cpu"))
|
29 |
+
main_model.eval()
|
30 |
+
|
31 |
+
problem_model = VotePredictor(country_count=46)
|
32 |
+
problem_model.load_state_dict(torch.load("problem_country_model.pt", map_location="cpu"))
|
33 |
+
problem_model.eval()
|
34 |
+
|
35 |
+
# === Load Encoder ===
|
36 |
+
with open("country_encoder.pkl", "rb") as f:
|
37 |
+
country_encoder = pickle.load(f)
|
38 |
+
|
39 |
+
# === Initialize Vectorizer ===
|
40 |
+
vectorizer = BertVectorizer()
|
41 |
+
|
42 |
+
# === List of problem countries ===
|
43 |
+
problem_countries = [
|
44 |
+
'SURINAME', 'TURKMENISTAN', 'MARSHALL ISLANDS', 'MYANMAR', 'GABON',
|
45 |
+
'CENTRAL AFRICAN REPUBLIC', 'ISRAEL', 'REPUBLIC OF THE CONGO', 'LIBERIA',
|
46 |
+
'SOMALIA', 'CANADA', "LAO PEOPLE'S DEMOCRATIC REPUBLIC", 'TUVALU',
|
47 |
+
'DEMOCRATIC REPUBLIC OF THE CONGO', 'MONTENEGRO', 'VANUATU', 'UNITED STATES',
|
48 |
+
'TÜRKİYE', 'SEYCHELLES', 'SERBIA', 'CABO VERDE',
|
49 |
+
'VENEZUELA (BOLIVARIAN REPUBLIC OF)', 'KIRIBATI', 'IRAN (ISLAMIC REPUBLIC OF)',
|
50 |
+
'SOUTH SUDAN', 'ALBANIA', 'CZECHIA', 'DOMINICA', 'SAO TOME AND PRINCIPE',
|
51 |
+
'ESWATINI', 'CHAD', 'EQUATORIAL GUINEA', 'GAMBIA', 'LIBYA',
|
52 |
+
"CÔTE D'IVOIRE", 'SAINT CHRISTOPHER AND NEVIS', 'RWANDA', 'TONGA', 'NIGER',
|
53 |
+
'MICRONESIA (FEDERATED STATES OF)', 'SYRIAN ARAB REPUBLIC', 'NAURU',
|
54 |
+
'PALAU', 'NORTH MACEDONIA', 'NETHERLANDS', 'BOLIVIA (PLURINATIONAL STATE OF)'
|
55 |
+
]
|
56 |
+
|
57 |
+
|
58 |
+
# === Prediction Function ===
|
59 |
+
def predict_votes(resolution_text):
|
60 |
+
vec = vectorizer.encode(resolution_text)
|
61 |
+
x_tensor = torch.tensor(vec, dtype=torch.float32).unsqueeze(0) # batchify
|
62 |
+
|
63 |
+
countries = []
|
64 |
+
votes = []
|
65 |
+
|
66 |
+
for country in country_encoder.classes_:
|
67 |
+
country_id = country_encoder.transform([country])[0]
|
68 |
+
c_tensor = torch.tensor([country_id], dtype=torch.long)
|
69 |
+
|
70 |
+
model = problem_model if country in problem_countries else main_model
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
logit = model(x_tensor, c_tensor).squeeze()
|
74 |
+
prob = torch.sigmoid(logit).item()
|
75 |
+
vote = "✅ Yes" if prob > 0.5 else "❌ Not Yes"
|
76 |
+
|
77 |
+
countries.append(country)
|
78 |
+
votes.append(vote)
|
79 |
+
|
80 |
+
df = pd.DataFrame({
|
81 |
+
"Country": countries,
|
82 |
+
"Vote": votes
|
83 |
+
}).sort_values("Country")
|
84 |
+
|
85 |
+
return df
|
86 |
+
|
87 |
+
|
88 |
+
# === Interface ===
|
89 |
+
iface = gr.Interface(
|
90 |
+
fn=predict_votes,
|
91 |
+
inputs=gr.Textbox(lines=15, label="Paste UN Resolution Text Here"),
|
92 |
+
outputs=gr.Dataframe(label="Predicted Votes by Country"),
|
93 |
+
title="UN Resolution Vote Predictor",
|
94 |
+
description="Predicts how each UN country might vote on your custom resolution text. Two models: one for stable democracies, one for spicy outliers.",
|
95 |
+
live=False
|
96 |
+
)
|
97 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
iface.launch()
|