Upload code.ipynb
Browse files- code.ipynb +535 -0
code.ipynb
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "38957f6a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd \n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import matplotlib.pyplot as plt"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 6,
|
18 |
+
"id": "9ec92866",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"name": "stderr",
|
23 |
+
"output_type": "stream",
|
24 |
+
"text": [
|
25 |
+
"c:\\Users\\ukhal\\anaconda3\\envs\\datascience\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
26 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
"WARNING:tensorflow:From c:\\Users\\ukhal\\anaconda3\\envs\\datascience\\Lib\\site-packages\\tf_keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
34 |
+
"\n"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"from sentence_transformers import SentenceTransformer\n",
|
40 |
+
"\n",
|
41 |
+
"model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')\n",
|
42 |
+
"model.save('my_local_models/miniLM-v2')"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"id": "a9fc3745",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [
|
51 |
+
{
|
52 |
+
"name": "stderr",
|
53 |
+
"output_type": "stream",
|
54 |
+
"text": [
|
55 |
+
"Batches: 100%|██████████| 1720/1720 [05:45<00:00, 4.98it/s]\n"
|
56 |
+
]
|
57 |
+
}
|
58 |
+
],
|
59 |
+
"source": [
|
60 |
+
"vectors = model.encode(df['text'].tolist(), batch_size=32, show_progress_bar=True)\n",
|
61 |
+
"\n",
|
62 |
+
"# Add the vectors as a new column\n",
|
63 |
+
"df['vector'] = list(vectors)"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 8,
|
69 |
+
"id": "616a89d5",
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
74 |
+
"\n",
|
75 |
+
"country_encoder = LabelEncoder()\n",
|
76 |
+
"df['country_id'] = country_encoder.fit_transform(df['country'])"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": null,
|
82 |
+
"id": "1a5d9807",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"name": "stdout",
|
87 |
+
"output_type": "stream",
|
88 |
+
"text": [
|
89 |
+
"Epoch 1 — Loss: 559.1745\n",
|
90 |
+
"Epoch 2 — Loss: 511.0904\n",
|
91 |
+
"Epoch 3 — Loss: 487.1494\n",
|
92 |
+
"Epoch 4 — Loss: 476.0557\n",
|
93 |
+
"Epoch 5 — Loss: 463.6449\n",
|
94 |
+
"Epoch 6 — Loss: 458.0139\n",
|
95 |
+
"Epoch 7 — Loss: 454.9403\n",
|
96 |
+
"Epoch 8 — Loss: 445.9739\n",
|
97 |
+
"Epoch 9 — Loss: 443.4053\n",
|
98 |
+
"Epoch 10 — Loss: 441.2702\n",
|
99 |
+
"Epoch 11 — Loss: 435.5733\n",
|
100 |
+
"Epoch 12 — Loss: 432.5762\n",
|
101 |
+
"Epoch 13 — Loss: 428.4215\n",
|
102 |
+
"Epoch 14 — Loss: 424.5392\n",
|
103 |
+
"Epoch 15 — Loss: 427.4328\n",
|
104 |
+
"Epoch 16 — Loss: 419.4463\n",
|
105 |
+
"Epoch 17 — Loss: 420.8522\n",
|
106 |
+
"Epoch 18 — Loss: 418.8724\n",
|
107 |
+
"Epoch 19 — Loss: 410.7244\n",
|
108 |
+
"Epoch 20 — Loss: 408.1810\n",
|
109 |
+
"Epoch 21 — Loss: 404.8192\n",
|
110 |
+
"Epoch 22 — Loss: 402.0590\n",
|
111 |
+
"Epoch 23 — Loss: 400.0788\n",
|
112 |
+
"Epoch 24 — Loss: 395.5753\n",
|
113 |
+
"Epoch 25 — Loss: 391.3283\n",
|
114 |
+
"Epoch 26 — Loss: 390.9558\n",
|
115 |
+
"Epoch 27 — Loss: 386.5741\n",
|
116 |
+
" precision recall f1-score support\n",
|
117 |
+
"\n",
|
118 |
+
" Not Yes 0.78 0.88 0.83 27643\n",
|
119 |
+
" Yes 0.86 0.75 0.80 27377\n",
|
120 |
+
"\n",
|
121 |
+
" accuracy 0.81 55020\n",
|
122 |
+
" macro avg 0.82 0.81 0.81 55020\n",
|
123 |
+
"weighted avg 0.82 0.81 0.81 55020\n",
|
124 |
+
"\n"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"source": [
|
129 |
+
"import torch\n",
|
130 |
+
"import torch.nn as nn\n",
|
131 |
+
"import numpy as np\n",
|
132 |
+
"from torch.utils.data import TensorDataset, DataLoader, WeightedRandomSampler\n",
|
133 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
134 |
+
"from sklearn.metrics import classification_report\n",
|
135 |
+
"\n",
|
136 |
+
"# ----------------------------\n",
|
137 |
+
"# Модель\n",
|
138 |
+
"# ----------------------------\n",
|
139 |
+
"\n",
|
140 |
+
"class VotePredictor(nn.Module):\n",
|
141 |
+
" def __init__(self, text_dim=384, country_count=193, country_emb_dim=32, hidden_dim=256):\n",
|
142 |
+
" super(VotePredictor, self).__init__()\n",
|
143 |
+
" self.country_embedding = nn.Embedding(country_count, country_emb_dim)\n",
|
144 |
+
"\n",
|
145 |
+
" self.model = nn.Sequential(\n",
|
146 |
+
" nn.Linear(text_dim + country_emb_dim, hidden_dim),\n",
|
147 |
+
" nn.ReLU(),\n",
|
148 |
+
" nn.Dropout(0.3),\n",
|
149 |
+
" nn.Linear(hidden_dim, 1)\n",
|
150 |
+
" )\n",
|
151 |
+
"\n",
|
152 |
+
" def forward(self, text_vecs, country_ids):\n",
|
153 |
+
" country_vecs = self.country_embedding(country_ids)\n",
|
154 |
+
" x = torch.cat([text_vecs, country_vecs], dim=1)\n",
|
155 |
+
" return self.model(x)\n",
|
156 |
+
"\n",
|
157 |
+
"# ----------------------------\n",
|
158 |
+
"# Подготовка данных\n",
|
159 |
+
"# ----------------------------\n",
|
160 |
+
"\n",
|
161 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
162 |
+
"model = VotePredictor().to(device)\n",
|
163 |
+
"criterion = nn.BCEWithLogitsLoss()\n",
|
164 |
+
"optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)\n",
|
165 |
+
"\n",
|
166 |
+
"# Подготовка тензоров\n",
|
167 |
+
"X_vectors = np.stack(df['vector'].values)\n",
|
168 |
+
"y_labels = df['vote'].values\n",
|
169 |
+
"country_ids = country_encoder.fit_transform(df['country'].values)\n",
|
170 |
+
"\n",
|
171 |
+
"X_tensor = torch.tensor(X_vectors, dtype=torch.float32)\n",
|
172 |
+
"y_tensor = torch.tensor(y_labels, dtype=torch.float32)\n",
|
173 |
+
"c_tensor = torch.tensor(country_ids, dtype=torch.long)\n",
|
174 |
+
"\n",
|
175 |
+
"# Тензорный датасет\n",
|
176 |
+
"dataset = TensorDataset(X_tensor, c_tensor, y_tensor)\n",
|
177 |
+
"\n",
|
178 |
+
"# ----------------------------\n",
|
179 |
+
"# Логика весов\n",
|
180 |
+
"# ----------------------------\n",
|
181 |
+
"\n",
|
182 |
+
"# Веса\n",
|
183 |
+
"class_sample_count = np.array([(y_tensor == 0).sum(), (y_tensor == 1).sum()])\n",
|
184 |
+
"weights = 1. / class_sample_count\n",
|
185 |
+
"sample_weights = weights[y_tensor.long().numpy()]\n",
|
186 |
+
"\n",
|
187 |
+
"sampler = WeightedRandomSampler(\n",
|
188 |
+
" weights=sample_weights,\n",
|
189 |
+
" num_samples=len(sample_weights),\n",
|
190 |
+
" replacement=True\n",
|
191 |
+
")\n",
|
192 |
+
"\n",
|
193 |
+
"# Загружаем данные\n",
|
194 |
+
"train_loader = DataLoader(dataset, batch_size=64, sampler=sampler)\n",
|
195 |
+
"\n",
|
196 |
+
"# ----------------------------\n",
|
197 |
+
"# Эпохи обучения\n",
|
198 |
+
"# ----------------------------\n",
|
199 |
+
"\n",
|
200 |
+
"for epoch in range(27):\n",
|
201 |
+
" model.train()\n",
|
202 |
+
" total_loss = 0\n",
|
203 |
+
"\n",
|
204 |
+
" for batch_x, batch_c, batch_y in train_loader:\n",
|
205 |
+
" batch_x, batch_c, batch_y = batch_x.to(device), batch_c.to(device), batch_y.to(device)\n",
|
206 |
+
"\n",
|
207 |
+
" optimizer.zero_grad()\n",
|
208 |
+
" logits = model(batch_x, batch_c).squeeze()\n",
|
209 |
+
" loss = criterion(logits, batch_y)\n",
|
210 |
+
" loss.backward()\n",
|
211 |
+
" optimizer.step()\n",
|
212 |
+
"\n",
|
213 |
+
" total_loss += loss.item()\n",
|
214 |
+
"\n",
|
215 |
+
" print(f\"Epoch {epoch+1} — Loss: {total_loss:.4f}\")\n",
|
216 |
+
"\n",
|
217 |
+
"# ----------------------------\n",
|
218 |
+
"# Оценка\n",
|
219 |
+
"# ----------------------------\n",
|
220 |
+
"\n",
|
221 |
+
"model.eval()\n",
|
222 |
+
"all_preds, all_true, all_country_ids = [], [], []\n",
|
223 |
+
"\n",
|
224 |
+
"with torch.no_grad():\n",
|
225 |
+
" for batch_x, batch_c, batch_y in train_loader: # or use test_loader if you split\n",
|
226 |
+
" logits = model(batch_x.to(device), batch_c.to(device)).squeeze()\n",
|
227 |
+
" probs = torch.sigmoid(logits).cpu().numpy()\n",
|
228 |
+
" preds = (probs > 0.5445639).astype(int)\n",
|
229 |
+
"\n",
|
230 |
+
" all_preds.extend(preds)\n",
|
231 |
+
" all_true.extend(batch_y.numpy())\n",
|
232 |
+
" all_country_ids.extend(batch_c.numpy()) # <— Here's the missing link\n",
|
233 |
+
"\n",
|
234 |
+
"print(classification_report(all_true, all_preds, target_names=['Not Yes', 'Yes']))\n"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": null,
|
240 |
+
"id": "7ff81e59",
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"problem_countries = df_metrics[df_metrics['f1'] < 0.7]['country'].tolist()\n",
|
245 |
+
"print(f\"{len(problem_countries)} countries with F1 < 0.7.\")"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"cell_type": "code",
|
250 |
+
"execution_count": 15,
|
251 |
+
"id": "9d345404",
|
252 |
+
"metadata": {},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"df_problem = df[df['country'].isin(problem_countries)].copy()"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": 16,
|
261 |
+
"id": "dac22a07",
|
262 |
+
"metadata": {},
|
263 |
+
"outputs": [],
|
264 |
+
"source": [
|
265 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
266 |
+
"\n",
|
267 |
+
"problem_country_encoder = LabelEncoder()\n",
|
268 |
+
"df_problem['country_id'] = problem_country_encoder.fit_transform(df_problem['country'])"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": null,
|
274 |
+
"id": "ebf3b626",
|
275 |
+
"metadata": {},
|
276 |
+
"outputs": [],
|
277 |
+
"source": [
|
278 |
+
"X_problem = np.stack(df_problem['vector'].values)\n",
|
279 |
+
"y_problem = df_problem['vote'].values\n",
|
280 |
+
"c_problem = df_problem['country_id'].values\n",
|
281 |
+
"\n",
|
282 |
+
"X_tensor = torch.tensor(X_problem, dtype=torch.float32)\n",
|
283 |
+
"y_tensor = torch.tensor(y_problem, dtype=torch.float32)\n",
|
284 |
+
"c_tensor = torch.tensor(c_problem, dtype=torch.long)\n",
|
285 |
+
"\n",
|
286 |
+
"from torch.utils.data import TensorDataset, DataLoader\n",
|
287 |
+
"\n",
|
288 |
+
"dataset = TensorDataset(X_tensor, c_tensor, y_tensor)\n",
|
289 |
+
"\n",
|
290 |
+
"class_sample_count = np.array([(y_tensor == 0).sum(), (y_tensor == 1).sum()])\n",
|
291 |
+
"weights = 1. / class_sample_count\n",
|
292 |
+
"sample_weights = weights[y_tensor.long().numpy()]\n",
|
293 |
+
"sampler = WeightedRandomSampler(sample_weights, len(sample_weights), replacement=True)\n",
|
294 |
+
"\n",
|
295 |
+
"train_loader = DataLoader(dataset, batch_size=64, sampler=sampler)\n",
|
296 |
+
"\n",
|
297 |
+
"problem_model = VotePredictor(country_count=len(problem_country_encoder.classes_)).to(device)\n",
|
298 |
+
"criterion = nn.BCEWithLogitsLoss()\n",
|
299 |
+
"optimizer = torch.optim.Adam(problem_model.parameters(), lr=1e-4)"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "code",
|
304 |
+
"execution_count": null,
|
305 |
+
"id": "facb3c23",
|
306 |
+
"metadata": {},
|
307 |
+
"outputs": [
|
308 |
+
{
|
309 |
+
"name": "stdout",
|
310 |
+
"output_type": "stream",
|
311 |
+
"text": [
|
312 |
+
"Epoch 1 — Loss: 176.5783\n",
|
313 |
+
"Epoch 2 — Loss: 172.1360\n",
|
314 |
+
"Epoch 3 — Loss: 169.1655\n",
|
315 |
+
"Epoch 4 — Loss: 167.5052\n",
|
316 |
+
"Epoch 5 — Loss: 167.0431\n",
|
317 |
+
"Epoch 6 — Loss: 164.9137\n",
|
318 |
+
"Epoch 7 — Loss: 165.0920\n",
|
319 |
+
"Epoch 8 — Loss: 164.1620\n",
|
320 |
+
"\n",
|
321 |
+
"🧾 SPECIAL MODEL EVALUATION (Bad-F1 Countries Only):\n",
|
322 |
+
"\n",
|
323 |
+
" precision recall f1-score support\n",
|
324 |
+
"\n",
|
325 |
+
" Not Yes 0.64 0.64 0.64 8252\n",
|
326 |
+
" Yes 0.64 0.64 0.64 8254\n",
|
327 |
+
"\n",
|
328 |
+
" accuracy 0.64 16506\n",
|
329 |
+
" macro avg 0.64 0.64 0.64 16506\n",
|
330 |
+
"weighted avg 0.64 0.64 0.64 16506\n",
|
331 |
+
"\n"
|
332 |
+
]
|
333 |
+
}
|
334 |
+
],
|
335 |
+
"source": [
|
336 |
+
"import torch\n",
|
337 |
+
"import torch.nn as nn\n",
|
338 |
+
"import numpy as np\n",
|
339 |
+
"import pandas as pd\n",
|
340 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
341 |
+
"from sklearn.metrics import classification_report\n",
|
342 |
+
"from torch.utils.data import TensorDataset, DataLoader, WeightedRandomSampler\n",
|
343 |
+
"\n",
|
344 |
+
"# ----------------------\n",
|
345 |
+
"# Модель\n",
|
346 |
+
"# ----------------------\n",
|
347 |
+
"\n",
|
348 |
+
"class VotePredictor(nn.Module):\n",
|
349 |
+
" def __init__(self, text_dim=384, country_count=50, country_emb_dim=32, hidden_dim=256):\n",
|
350 |
+
" super(VotePredictor, self).__init__()\n",
|
351 |
+
" self.country_embedding = nn.Embedding(country_count, country_emb_dim)\n",
|
352 |
+
" self.model = nn.Sequential(\n",
|
353 |
+
" nn.Linear(text_dim + country_emb_dim, hidden_dim),\n",
|
354 |
+
" nn.ReLU(),\n",
|
355 |
+
" nn.Dropout(0.3),\n",
|
356 |
+
" nn.Linear(hidden_dim, 1)\n",
|
357 |
+
" )\n",
|
358 |
+
"\n",
|
359 |
+
" def forward(self, text_vecs, country_ids):\n",
|
360 |
+
" country_vecs = self.country_embedding(country_ids)\n",
|
361 |
+
" x = torch.cat([text_vecs, country_vecs], dim=1)\n",
|
362 |
+
" return self.model(x)\n",
|
363 |
+
"\n",
|
364 |
+
"# ----------------------\n",
|
365 |
+
"# STEP 1: Фильтруем проблемные страны\n",
|
366 |
+
"# ----------------------\n",
|
367 |
+
"\n",
|
368 |
+
"problem_countries = df_metrics[df_metrics['f1'] < 0.7]['country'].tolist()\n",
|
369 |
+
"df_problem = df[df['country'].isin(problem_countries)].copy()\n",
|
370 |
+
"\n",
|
371 |
+
"# ----------------------\n",
|
372 |
+
"# STEP 2: Энкодинг стран\n",
|
373 |
+
"# ----------------------\n",
|
374 |
+
"\n",
|
375 |
+
"problem_country_encoder = LabelEncoder()\n",
|
376 |
+
"df_problem['country_id'] = problem_country_encoder.fit_transform(df_problem['country'])\n",
|
377 |
+
"\n",
|
378 |
+
"X_problem = np.stack(df_problem['vector'].values)\n",
|
379 |
+
"y_problem = df_problem['vote'].values\n",
|
380 |
+
"c_problem = df_problem['country_id'].values\n",
|
381 |
+
"\n",
|
382 |
+
"# ----------------------\n",
|
383 |
+
"# STEP 3: Подготовка тензоров\n",
|
384 |
+
"# ----------------------\n",
|
385 |
+
"\n",
|
386 |
+
"X_tensor = torch.tensor(X_problem, dtype=torch.float32)\n",
|
387 |
+
"y_tensor = torch.tensor(y_problem, dtype=torch.float32)\n",
|
388 |
+
"c_tensor = torch.tensor(c_problem, dtype=torch.long)\n",
|
389 |
+
"\n",
|
390 |
+
"dataset = TensorDataset(X_tensor, c_tensor, y_tensor)\n",
|
391 |
+
"\n",
|
392 |
+
"# Веса\n",
|
393 |
+
"class_sample_count = np.array([(y_tensor == 0).sum(), (y_tensor == 1).sum()])\n",
|
394 |
+
"weights = 1. / class_sample_count\n",
|
395 |
+
"sample_weights = weights[y_tensor.long().numpy()]\n",
|
396 |
+
"sampler = WeightedRandomSampler(sample_weights, len(sample_weights), replacement=True)\n",
|
397 |
+
"\n",
|
398 |
+
"train_loader = DataLoader(dataset, batch_size=64, sampler=sampler)\n",
|
399 |
+
"\n",
|
400 |
+
"# ----------------------\n",
|
401 |
+
"# STEP 4: Тренировка модели\n",
|
402 |
+
"# ----------------------\n",
|
403 |
+
"\n",
|
404 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
405 |
+
"model = VotePredictor(country_count=len(problem_country_encoder.classes_)).to(device)\n",
|
406 |
+
"criterion = nn.BCEWithLogitsLoss()\n",
|
407 |
+
"optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)\n",
|
408 |
+
"\n",
|
409 |
+
"# Эпохи обучения\n",
|
410 |
+
"for epoch in range(8):\n",
|
411 |
+
" model.train()\n",
|
412 |
+
" total_loss = 0\n",
|
413 |
+
"\n",
|
414 |
+
" for batch_x, batch_c, batch_y in train_loader:\n",
|
415 |
+
" batch_x, batch_c, batch_y = batch_x.to(device), batch_c.to(device), batch_y.to(device)\n",
|
416 |
+
"\n",
|
417 |
+
" optimizer.zero_grad()\n",
|
418 |
+
" logits = model(batch_x, batch_c).squeeze()\n",
|
419 |
+
" loss = criterion(logits, batch_y)\n",
|
420 |
+
" loss.backward()\n",
|
421 |
+
" optimizer.step()\n",
|
422 |
+
"\n",
|
423 |
+
" total_loss += loss.item()\n",
|
424 |
+
"\n",
|
425 |
+
" print(f\"Epoch {epoch+1} — Loss: {total_loss:.4f}\")\n",
|
426 |
+
"\n",
|
427 |
+
"# ----------------------\n",
|
428 |
+
"# STEP 5: Оценка\n",
|
429 |
+
"# ----------------------\n",
|
430 |
+
"\n",
|
431 |
+
"model.eval()\n",
|
432 |
+
"all_preds, all_true = [], []\n",
|
433 |
+
"\n",
|
434 |
+
"with torch.no_grad():\n",
|
435 |
+
" for batch_x, batch_c, batch_y in train_loader:\n",
|
436 |
+
" logits = model(batch_x.to(device), batch_c.to(device)).squeeze()\n",
|
437 |
+
" probs = torch.sigmoid(logits).cpu().numpy()\n",
|
438 |
+
" preds = (probs > 0.5).astype(int)\n",
|
439 |
+
"\n",
|
440 |
+
" all_preds.extend(preds)\n",
|
441 |
+
" all_true.extend(batch_y.numpy())\n",
|
442 |
+
"\n",
|
443 |
+
"print(\"\\n🧾 SPECIAL MODEL EVALUATION (Bad-F1 Countries Only):\\n\")\n",
|
444 |
+
"print(classification_report(all_true, all_preds, target_names=['Not Yes', 'Yes']))\n"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": 54,
|
450 |
+
"id": "39995c95",
|
451 |
+
"metadata": {},
|
452 |
+
"outputs": [
|
453 |
+
{
|
454 |
+
"data": {
|
455 |
+
"text/plain": [
|
456 |
+
"['SURINAME',\n",
|
457 |
+
" 'TURKMENISTAN',\n",
|
458 |
+
" 'MARSHALL ISLANDS',\n",
|
459 |
+
" 'MYANMAR',\n",
|
460 |
+
" 'GABON',\n",
|
461 |
+
" 'CENTRAL AFRICAN REPUBLIC',\n",
|
462 |
+
" 'ISRAEL',\n",
|
463 |
+
" 'REPUBLIC OF THE CONGO',\n",
|
464 |
+
" 'LIBERIA',\n",
|
465 |
+
" 'SOMALIA',\n",
|
466 |
+
" 'CANADA',\n",
|
467 |
+
" \"LAO PEOPLE'S DEMOCRATIC REPUBLIC\",\n",
|
468 |
+
" 'TUVALU',\n",
|
469 |
+
" 'DEMOCRATIC REPUBLIC OF THE CONGO',\n",
|
470 |
+
" 'MONTENEGRO',\n",
|
471 |
+
" 'VANUATU',\n",
|
472 |
+
" 'UNITED STATES',\n",
|
473 |
+
" 'TÜRKİYE',\n",
|
474 |
+
" 'SEYCHELLES',\n",
|
475 |
+
" 'SERBIA',\n",
|
476 |
+
" 'CABO VERDE',\n",
|
477 |
+
" 'VENEZUELA (BOLIVARIAN REPUBLIC OF)',\n",
|
478 |
+
" 'KIRIBATI',\n",
|
479 |
+
" 'IRAN (ISLAMIC REPUBLIC OF)',\n",
|
480 |
+
" 'SOUTH SUDAN',\n",
|
481 |
+
" 'ALBANIA',\n",
|
482 |
+
" 'CZECHIA',\n",
|
483 |
+
" 'DOMINICA',\n",
|
484 |
+
" 'SAO TOME AND PRINCIPE',\n",
|
485 |
+
" 'ESWATINI',\n",
|
486 |
+
" 'CHAD',\n",
|
487 |
+
" 'EQUATORIAL GUINEA',\n",
|
488 |
+
" 'GAMBIA',\n",
|
489 |
+
" 'LIBYA',\n",
|
490 |
+
" \"CÔTE D'IVOIRE\",\n",
|
491 |
+
" 'SAINT CHRISTOPHER AND NEVIS',\n",
|
492 |
+
" 'RWANDA',\n",
|
493 |
+
" 'TONGA',\n",
|
494 |
+
" 'NIGER',\n",
|
495 |
+
" 'MICRONESIA (FEDERATED STATES OF)',\n",
|
496 |
+
" 'SYRIAN ARAB REPUBLIC',\n",
|
497 |
+
" 'NAURU',\n",
|
498 |
+
" 'PALAU',\n",
|
499 |
+
" 'NORTH MACEDONIA',\n",
|
500 |
+
" 'NETHERLANDS',\n",
|
501 |
+
" 'BOLIVIA (PLURINATIONAL STATE OF)']"
|
502 |
+
]
|
503 |
+
},
|
504 |
+
"execution_count": 54,
|
505 |
+
"metadata": {},
|
506 |
+
"output_type": "execute_result"
|
507 |
+
}
|
508 |
+
],
|
509 |
+
"source": [
|
510 |
+
"list(set(problem_countries))"
|
511 |
+
]
|
512 |
+
}
|
513 |
+
],
|
514 |
+
"metadata": {
|
515 |
+
"kernelspec": {
|
516 |
+
"display_name": "datascience",
|
517 |
+
"language": "python",
|
518 |
+
"name": "python3"
|
519 |
+
},
|
520 |
+
"language_info": {
|
521 |
+
"codemirror_mode": {
|
522 |
+
"name": "ipython",
|
523 |
+
"version": 3
|
524 |
+
},
|
525 |
+
"file_extension": ".py",
|
526 |
+
"mimetype": "text/x-python",
|
527 |
+
"name": "python",
|
528 |
+
"nbconvert_exporter": "python",
|
529 |
+
"pygments_lexer": "ipython3",
|
530 |
+
"version": "3.12.9"
|
531 |
+
}
|
532 |
+
},
|
533 |
+
"nbformat": 4,
|
534 |
+
"nbformat_minor": 5
|
535 |
+
}
|