import gradio as gr import json import importlib import os import sys from pathlib import Path import concurrent.futures import multiprocessing from src.containerized_eval import eval_string_script # 添加当前目录和src目录到模块搜索路径 current_dir = os.path.dirname(os.path.abspath(__file__)) src_dir = os.path.join(current_dir, "src") if current_dir not in sys.path: sys.path.append(current_dir) if src_dir not in sys.path: sys.path.append(src_dir) def evaluate(input_data): """评估代码的主函数 Args: input_data: 列表(批量处理多个测试用例) Returns: list: 包含评估结果的列表 """ try: if not isinstance(input_data, list): return {"status": "Exception", "error": "Input must be a list"} results = [] max_workers = multiprocessing.cpu_count() with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data} for future in concurrent.futures.as_completed(future_to_item): item = future_to_item[future] try: result = future.result() item.update(result) results.append(item) except Exception as e: item.update({"status": "Exception", "error": str(e)}) results.append(item) return results except Exception as e: return {"status": "Exception", "error": str(e)} def evaluate_single_case(input_data): """评估单个代码用例 Args: input_data: 字典(包含代码信息) Returns: dict: 包含评估结果的字典 """ try: if not isinstance(input_data, dict): return {"status": "Exception", "error": "Input item must be a dictionary"} language = input_data.get('language') completions = input_data.get('processed_completions', []) if not completions: return {"status": "Exception", "error": "No code provided"} results = [] for comp in completions: code = input_data.get('prompt') + comp + '\n' + input_data.get('tests') result = evaluate_code(code, language) if result["status"] == "OK": return {"status": "pass", "compiled_code": code} print(f'Code failed to compile: \n{code}') result["compiled_code"] = code results.append(result) return results[0] except Exception as e: return {"status": "Exception", "error": str(e)} def evaluate_code(code, language): """评估特定语言的代码 Args: code (str): 要评估的代码 language (str): 编程语言 Returns: dict: 包含评估结果的字典 """ try: # 使用containerized_eval中的eval_string_script函数 result = eval_string_script(language, code) if result["exit_code"] == 0: return {"status": "OK", "output": result["stdout"]} else: return { "status": "Error", "error": result["stderr"] if result["stderr"] else "Unknown error", "output": result["stdout"] } except Exception as e: return {"status": "Exception", "error": str(e)} # 创建Gradio接口 demo = gr.Interface( fn=evaluate, inputs=gr.JSON(), outputs=gr.JSON(), title="代码评估服务", description="支持多种编程语言的代码评估服务" ) if __name__ == "__main__": demo.launch()