Spaces:
Sleeping
Sleeping
File size: 11,709 Bytes
a27816a 30b1610 4f32597 a27816a 3499425 fc6c268 7032d9e f41205f 30b1610 74d43a2 4f32597 74d43a2 4f32597 74d43a2 4f32597 08681f4 30b1610 141e12d 3499425 141e12d 3499425 141e12d 3499425 a27816a e74db4f 3499425 141e12d 08681f4 3499425 30b1610 08681f4 a27816a 3499425 52d43e7 3499425 52d43e7 3499425 4d4a4b6 0900021 08681f4 3499425 08681f4 22cec65 08681f4 30b1610 08681f4 f41205f e18e210 30b1610 08681f4 30b1610 7032d9e 558708b 7032d9e 558708b 7032d9e 558708b 7032d9e 5001017 bef3e47 30b1610 08681f4 a27816a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
from datetime import datetime, timedelta
from src.containerized_eval import eval_string_script
# 添加当前目录和src目录到模块搜索路径
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
sys.path.append(current_dir)
if src_dir not in sys.path:
sys.path.append(src_dir)
def evaluate(input_data):
"""评估代码的主函数
Args:
input_data: 列表(批量处理多个测试用例)
Returns:
list: 包含评估结果的列表
"""
try:
if not isinstance(input_data, list):
return {"status": "Exception", "error": "Input must be a list"}
results = []
max_workers = multiprocessing.cpu_count()
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
for future in concurrent.futures.as_completed(future_to_item):
item = future_to_item[future]
try:
result = future.result()
item.update(result)
results.append(item)
except Exception as e:
item.update({"status": "Exception", "error": str(e)})
results.append(item)
return results
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_single_case(input_data):
"""评估单个代码用例
Args:
input_data: 字典(包含代码信息)
Returns:
dict: 包含评估结果的字典
"""
try:
if not isinstance(input_data, dict):
return {"status": "Exception", "error": "Input item must be a dictionary"}
language = input_data.get('language')
completions = input_data.get('processed_completions', [])
if not completions:
return {"status": "Exception", "error": "No code provided"}
results = []
for comp in completions:
code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
result = evaluate_code(code, language)
if result["status"] == "OK":
return result
results.append(result)
return results[0]
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_code(code, language):
"""评估特定语言的代码
Args:
code (str): 要评估的代码
language (str): 编程语言
Returns:
dict: 包含评估结果的字典
"""
try:
# 使用containerized_eval中的eval_string_script函数
result = eval_string_script(language, code)
return result
except Exception as e:
return {"status": "Exception", "error": str(e)}
# 创建任务队列和相关变量
task_queue = queue.Queue()
tasks_info = []
tasks_lock = threading.Lock()
total_tasks_count = 0
completed_tasks_count = 0
estimated_completion_time = None
average_task_time = 5 # 默认平均任务时间(秒)
def add_task(input_data):
"""添加任务到队列
Args:
input_data: 任务数据
Returns:
dict: 包含任务ID和状态的字典
"""
global total_tasks_count, tasks_info
try:
if not isinstance(input_data, list):
return {"status": "错误", "message": "输入必须是列表格式"}
task_id = int(time.time() * 1000) # 使用时间戳作为任务ID
task_count = len(input_data)
with tasks_lock:
for item in input_data:
task_queue.put((task_id, item))
total_tasks_count += 1
# 更新任务信息
task_info = {
"id": task_id,
"count": task_count,
"status": "等待中",
"submit_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"completed": 0
}
tasks_info.append(task_info)
# 更新预计完成时间
update_estimated_completion_time()
return {"status": "成功", "task_id": task_id, "message": f"已添加{task_count}个任务到队列"}
except Exception as e:
return {"status": "错误", "message": str(e)}
def update_estimated_completion_time():
"""更新预计完成时间"""
global estimated_completion_time, average_task_time
remaining_tasks = total_tasks_count - completed_tasks_count
if remaining_tasks > 0:
# 计算预计完成时间
estimated_seconds = remaining_tasks * average_task_time
estimated_completion_time = datetime.now() + timedelta(seconds=estimated_seconds)
else:
estimated_completion_time = None
def process_tasks():
"""处理队列中的任务"""
global completed_tasks_count, average_task_time, tasks_info
while True:
try:
if not task_queue.empty():
start_time = time.time()
# 获取任务并处理
task_id, task_data = task_queue.get()
result = evaluate_single_case(task_data)
# 更新任务状态
with tasks_lock:
completed_tasks_count += 1
# 更新平均任务时间(使用移动平均)
task_time = time.time() - start_time
average_task_time = (average_task_time * 0.9) + (task_time * 0.1)
# 更新任务信息
for task in tasks_info:
if task["id"] == task_id:
task["completed"] += 1
if task["completed"] >= task["count"]:
task["status"] = "已完成"
break
# 更新预计完成时间
update_estimated_completion_time()
task_queue.task_done()
else:
time.sleep(0.1)
except Exception as e:
print(f"处理任务时出错: {str(e)}")
time.sleep(1)
# 启动任务处理线程
for _ in range(multiprocessing.cpu_count()):
threading.Thread(target=process_tasks, daemon=True).start()
def get_queue_status():
"""获取队列状态
Returns:
tuple: 包含任务信息、完成进度和预计完成时间的元组
"""
with tasks_lock:
# 复制任务信息以避免并发问题
current_tasks = tasks_info.copy()
# 计算进度
if total_tasks_count > 0:
progress = completed_tasks_count / total_tasks_count
else:
progress = 0
# 格式化预计完成时间
if estimated_completion_time:
eta = estimated_completion_time.strftime("%Y-%m-%d %H:%M:%S")
remaining_seconds = (estimated_completion_time - datetime.now()).total_seconds()
if remaining_seconds < 60:
eta_text = f"{int(remaining_seconds)}秒后完成"
elif remaining_seconds < 3600:
eta_text = f"{int(remaining_seconds/60)}分钟后完成"
else:
eta_text = f"{int(remaining_seconds/3600)}小时{int((remaining_seconds%3600)/60)}分钟后完成"
else:
eta = "无任务"
eta_text = "无任务"
return current_tasks, progress, eta, eta_text
# 创建Gradio界面
with gr.Blocks(title="代码评估服务", theme=gr.themes.Soft(primary_hue="blue")) as demo:
gr.Markdown(
"""
# 代码评估服务任务队列监控
实时监控系统中的任务队列状态和预计完成时间
"""
)
with gr.Row():
with gr.Column(scale=2):
# 任务提交区域
with gr.Group():
gr.Markdown("### 提交新任务")
input_json = gr.JSON(label="输入数据(JSON格式列表)")
submit_btn = gr.Button("提交任务", variant="primary")
with gr.Column(scale=3):
# 状态概览区域
with gr.Group():
gr.Markdown("### 队列状态概览")
with gr.Row():
with gr.Column():
total_tasks = gr.Textbox(label="总任务数", value="0")
with gr.Column():
completed = gr.Textbox(label="已完成任务", value="0")
with gr.Column():
remaining = gr.Textbox(label="剩余任务", value="0")
progress_bar = gr.Slider(minimum=0, maximum=1, value=0, label="完成进度", interactive=False)
eta_display = gr.Textbox(label="预计完成时间", value="无任务")
# 任务列表区域
with gr.Group():
gr.Markdown("### 任务队列详情")
task_table = gr.Dataframe(
headers=["任务ID", "任务数量", "状态", "提交时间", "已完成/总数"],
datatype=["str", "number", "str", "str", "str"],
row_count=10,
col_count=(5, "fixed"),
interactive=False
)
# 刷新按钮
refresh_btn = gr.Button("刷新状态", variant="secondary")
# 添加任务的处理函数
def handle_submit(input_data):
result = add_task(input_data)
return update_ui_status(), result["message"]
# 更新UI状态的函数
def update_ui_status():
tasks, progress, eta, eta_text = get_queue_status()
# 准备表格数据
table_data = []
for task in tasks:
table_data.append([
str(task["id"]),
task["count"],
task["status"],
task["submit_time"],
f"{task['completed']}/{task['count']}"
])
return (
table_data,
str(total_tasks_count),
str(completed_tasks_count),
str(total_tasks_count - completed_tasks_count),
progress,
eta_text
)
# 设置事件处理
submit_btn.click(
handle_submit,
inputs=[input_json],
outputs=[task_table, total_tasks, completed, remaining, progress_bar, eta_display, gr.Textbox(visible=False)]
)
refresh_btn.click(
update_ui_status,
inputs=[],
outputs=[task_table, total_tasks, completed, remaining, progress_bar, eta_display]
)
# 定时刷新UI
demo.load(update_ui_status, inputs=[], outputs=[task_table, total_tasks, completed, remaining, progress_bar, eta_display])
# 注释掉不兼容的every方法,改用JavaScript实现自动刷新
refresh_interval = gr.Number(value=3, visible=False)
demo.load(lambda: None, None, js="(()=>{setInterval(()=>{document.querySelector('#refresh-btn').click();}, 3000);return [];})")
# 添加evaluate函数作为API端点
demo.queue()
demo.add_api_route("/evaluate", evaluate, methods=["POST"])
if __name__ == "__main__":
demo.launch() |