Spaces:
Sleeping
Sleeping
File size: 23,967 Bytes
a27816a 30b1610 4f32597 a27816a 3499425 fc6c268 a3558a8 7032d9e a3558a8 ccdd995 a3558a8 ccdd995 f41205f 30b1610 74d43a2 4f32597 74d43a2 4f32597 74d43a2 4f32597 a3558a8 621bc72 a3558a8 ccdd995 a3558a8 ccdd995 621bc72 a3558a8 621bc72 3ae05a4 a3558a8 621bc72 ccdd995 621bc72 a3558a8 621bc72 a3558a8 621bc72 a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 621bc72 a3558a8 621bc72 a3558a8 621bc72 ccdd995 08681f4 30b1610 141e12d 3499425 141e12d 3499425 141e12d 3499425 a3558a8 e74db4f a3558a8 3499425 141e12d a3558a8 141e12d 08681f4 3499425 30b1610 08681f4 a27816a 3499425 52d43e7 3499425 52d43e7 3499425 4d4a4b6 0900021 08681f4 3499425 a3558a8 08681f4 22cec65 08681f4 30b1610 08681f4 f41205f e18e210 30b1610 08681f4 30b1610 a3558a8 7032d9e a3558a8 7032d9e a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 7032d9e ccdd995 a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 7032d9e a3558a8 7032d9e a3558a8 7032d9e a3558a8 ccdd995 a3558a8 ccdd995 a3558a8 ccdd995 3ae05a4 ccdd995 3ae05a4 ccdd995 3ae05a4 ccdd995 a3558a8 621bc72 a3558a8 3ae05a4 a3558a8 621bc72 7032d9e a3558a8 7032d9e a3558a8 7032d9e a3558a8 7032d9e a3558a8 621bc72 a3558a8 7032d9e a3558a8 621bc72 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 621bc72 a3558a8 3399cd9 a3558a8 8c0f360 a3558a8 621bc72 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 8c0f360 a3558a8 edf1ecb 621bc72 a3558a8 edf1ecb 8c0f360 a3558a8 d4652ff a3558a8 8c0f360 1bac4cd 8c0f360 a3558a8 edf1ecb d4652ff a3558a8 d4652ff a3558a8 890be77 a3558a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
from src.containerized_eval import eval_string_script
# 添加当前目录和src目录到模块搜索路径
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
sys.path.append(current_dir)
if src_dir not in sys.path:
sys.path.append(src_dir)
# 创建消息队列
task_queue = queue.Queue()
# 存储任务状态的字典
task_status = {}
# 存储任务历史的列表,最多保存最近20个任务
task_history = []
# 用于保护共享资源的锁
lock = threading.Lock()
# 工作线程数
worker_threads = multiprocessing.cpu_count()
# 后台线程是否运行的标志
running = True
# 任务类型到处理时间的映射
task_type_times = {}
def queue_processor():
"""处理队列中的任务"""
while running:
try:
# 从队列中获取任务,如果队列为空等待0.1
task_id, input_data, request_time = task_queue.get(timeout=0.1)
with lock:
task_status[task_id]['status'] = 'processing'
task_status[task_id]['start_time'] = time.time()
# 识别任务特征以估计完成时间
# 例如:语言类型、代码大小等
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
with lock:
task_status[task_id]['estimated_factors'] = {
'language': language,
'size': task_size,
'complexity': task_complexity
}
# 处理任务
result = evaluate(input_data)
# 更新任务状态
end_time = time.time()
process_time = end_time - task_status[task_id]['start_time']
with lock:
task_status[task_id]['status'] = 'completed'
task_status[task_id]['result'] = result
task_status[task_id]['end_time'] = end_time
task_status[task_id]['process_time'] = process_time
# 更新任务类型到处理时间的映射
if 'estimated_factors' in task_status[task_id]:
factors = task_status[task_id]['estimated_factors']
key = f"{factors['language']}_{factors['complexity']}"
if key not in task_type_times:
task_type_times[key] = []
# 记录此类型任务的处理时间
task_type_times[key].append(process_time / factors['size'])
# 只保留最近的10个记录
if len(task_type_times[key]) > 10:
task_type_times[key] = task_type_times[key][-10:]
# 更新任务历史
task_history.append({
'task_id': task_id,
'request_time': request_time,
'process_time': process_time,
'status': 'completed',
'factors': task_status[task_id].get('estimated_factors', {})
})
# 只保留最近20个任务
while len(task_history) > 20:
task_history.pop(0)
# 标记任务完成
task_queue.task_done()
except queue.Empty:
# 队列为空,继续等待
continue
except Exception as e:
if 'task_id' in locals():
with lock:
task_status[task_id]['status'] = 'error'
task_status[task_id]['error'] = str(e)
task_status[task_id]['end_time'] = time.time()
task_queue.task_done()
def _estimate_task_complexity(tasks):
"""估计任务复杂度
Args:
tasks: 任务列表
Returns:
str: 复杂度评级 ('simple', 'medium', 'complex')
"""
# 基于代码和测试的长度评估复杂度
total_code_length = 0
count = 0
for task in tasks:
if isinstance(task, dict):
prompt = task.get('prompt', '')
tests = task.get('tests', '')
completions = task.get('processed_completions', [])
code_length = len(prompt) + len(tests)
if completions:
code_length += sum(len(comp) for comp in completions)
total_code_length += code_length
count += 1
if count == 0:
return 'medium' # 默认中等复杂度
avg_length = total_code_length / count
if avg_length < 1000:
return 'simple'
elif avg_length < 5000:
return 'medium'
else:
return 'complex'
def evaluate(input_data):
"""评估代码的主函数
Args:
input_data: 列表(批量处理多个测试用例)
Returns:
list: 包含评估结果的列表
"""
try:
if not isinstance(input_data, list):
return {"status": "Exception", "error": "Input must be a list"}
results = []
max_workers = multiprocessing.cpu_count()
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
for future in concurrent.futures.as_completed(future_to_item):
item = future_to_item[future]
try:
result = future.result()
item.update(result)
results.append(item)
except Exception as e:
item.update({"status": "Exception", "error": str(e)})
results.append(item)
return results
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_single_case(input_data):
"""评估单个代码用例
Args:
input_data: 字典(包含代码信息)
Returns:
dict: 包含评估结果的字典
"""
try:
if not isinstance(input_data, dict):
return {"status": "Exception", "error": "Input item must be a dictionary"}
language = input_data.get('language')
completions = input_data.get('processed_completions', [])
if not completions:
return {"status": "Exception", "error": "No code provided"}
results = []
for comp in completions:
code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
result = evaluate_code(code, language)
if result["status"] == "OK":
return result
results.append(result)
return results[0]
except Exception as e:
return {"status": "Exception", "error": str(e)}
def evaluate_code(code, language):
"""评估特定语言的代码
Args:
code (str): 要评估的代码
language (str): 编程语言
Returns:
dict: 包含评估结果的字典
"""
try:
# 使用containerized_eval中的eval_string_script函数
result = eval_string_script(language, code)
return result
except Exception as e:
return {"status": "Exception", "error": str(e)}
def synchronous_evaluate(input_data):
"""同步评估代码,兼容原来的接口
这个函数会阻塞直到评估完成,然后返回结果
Args:
input_data: 要评估的输入数据
Returns:
dict: 评估结果
"""
# a) 估计此任务的特征
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
# b) 估计完成时间用于前端显示
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
# 获取队列当前状态
queue_info = get_queue_status()
waiting_tasks = queue_info['waiting_tasks']
# 创建任务
task_id = str(uuid.uuid4())
request_time = time.time()
with lock:
# 创建任务状态记录
task_status[task_id] = {
'status': 'queued',
'queued_time': request_time,
'queue_position': task_queue.qsize() + 1,
'synchronous': True, # 标记为同步任务
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
# 将任务添加到队列
task_queue.put((task_id, input_data, request_time))
# 等待任务完成
while True:
with lock:
if task_id in task_status:
status = task_status[task_id]['status']
if status == 'completed':
result = task_status[task_id]['result']
# 任务完成后清理状态
task_status.pop(task_id, None)
return result
elif status == 'error':
error = task_status[task_id].get('error', '未知错误')
# 任务出错后清理状态
task_status.pop(task_id, None)
return {"status": "Exception", "error": error}
# 短暂睡眠避免CPU占用过高
time.sleep(0.1)
def _get_estimated_time_for_task(language, complexity):
"""获取特定类型任务的估计处理时间
Args:
language: 编程语言
complexity: 任务复杂度
Returns:
float: 估计的处理时间(秒)
"""
key = f"{language}_{complexity}"
# 如果有历史数据,使用中位数作为估计值
if key in task_type_times and len(task_type_times[key]) > 0:
return np.median(task_type_times[key])
# 否则使用基于复杂度的默认估计值
if complexity == 'simple':
return 1.0
elif complexity == 'medium':
return 3.0
else: # complex
return 8.0
def enqueue_task(input_data):
"""将任务添加到队列
Args:
input_data: 要处理的任务数据
Returns:
dict: 包含任务ID和状态的字典
"""
# 估计任务特征和处理时间
if isinstance(input_data, list) and len(input_data) > 0:
sample_task = input_data[0]
language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
task_size = len(input_data)
task_complexity = _estimate_task_complexity(input_data)
else:
language = 'unknown'
task_size = 1
task_complexity = 'medium'
estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
estimated_total_time = estimated_time_per_task * task_size
task_id = str(uuid.uuid4())
request_time = time.time()
with lock:
# 创建任务状态记录
task_status[task_id] = {
'status': 'queued',
'queued_time': request_time,
'queue_position': task_queue.qsize() + 1,
'estimated_factors': {
'language': language,
'size': task_size,
'complexity': task_complexity
},
'estimated_time': estimated_total_time
}
# 获取队列状态以计算等待时间
queue_info = get_queue_status()
est_wait = queue_info['estimated_wait']
# 将任务添加到队列
task_queue.put((task_id, input_data, request_time))
return {
'task_id': task_id,
'status': 'queued',
'queue_position': task_status[task_id]['queue_position'],
'estimated_wait': est_wait,
'estimated_processing': estimated_total_time
}
def check_status(task_id):
"""检查任务状态
Args:
task_id: 任务ID
Returns:
dict: 包含任务状态的字典
"""
with lock:
if task_id not in task_status:
return {'status': 'not_found'}
status_info = task_status[task_id].copy()
# 如果任务已完成,从状态字典中移除(避免内存泄漏)
if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
task_status.pop(task_id, None)
return status_info
def get_queue_status():
"""获取队列状态
Returns:
dict: 包含队列状态的字典
"""
with lock:
# 获取队列中的所有任务
queued_tasks = [t for t in task_status.values() if t['status'] == 'queued']
processing_tasks = [t for t in task_status.values() if t['status'] == 'processing']
queue_size = task_queue.qsize()
active_tasks = len(processing_tasks)
waiting_tasks = len(queued_tasks)
# 更准确地估计等待时间
# 1. 计算当前处理中任务的剩余时间
remaining_processing_time = 0
for task in processing_tasks:
# 如果任务有开始时间和估计总时间
if 'start_time' in task and 'estimated_time' in task:
elapsed = time.time() - task['start_time']
# 剩余时间 = 估计总时间 - 已经过去的时间
remaining = max(0, task['estimated_time'] - elapsed)
remaining_processing_time += remaining
else:
# 默认假设还需要2秒
remaining_processing_time += 2
# 使用动态均衡:根据工作线程数量平衡负载
if active_tasks > 0:
remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
# 2. 计算排队中任务的估计处理时间
queued_processing_time = 0
for task in queued_tasks:
if 'estimated_time' in task:
queued_processing_time += task['estimated_time']
else:
# 默认假设每个任务5秒
queued_processing_time += 5
# 考虑并行处理:分摊到可用工作线程
if worker_threads > 0 and queued_processing_time > 0:
queued_processing_time = queued_processing_time / worker_threads
# 总估计等待时间
estimated_wait = remaining_processing_time + queued_processing_time
# 应用统计校正:使用历史数据调整预测
if task_history:
# 计算历史预测与实际处理时间的比例
prediction_ratios = []
for task in task_history:
if 'factors' in task and 'estimated_time' in task:
prediction_ratios.append(task['process_time'] / task['estimated_time'])
# 如果有足够数据,使用中位数比例调整当前预测
if prediction_ratios:
correction_factor = np.median(prediction_ratios)
# 应用校正因子,但限制在合理范围内
correction_factor = max(0.5, min(2.0, correction_factor))
estimated_wait *= correction_factor
# 确保等待时间有意义
estimated_wait = max(0.1, estimated_wait)
if waiting_tasks == 0 and active_tasks == 0:
estimated_wait = 0
# 获取最近处理的任务
recent_tasks = task_history[-5:] if task_history else []
return {
'queue_size': queue_size,
'active_tasks': active_tasks,
'waiting_tasks': waiting_tasks,
'worker_threads': worker_threads,
'estimated_wait': estimated_wait,
'recent_tasks': recent_tasks
}
def format_time(seconds):
"""格式化时间为易读格式
Args:
seconds: 秒数
Returns:
str: 格式化的时间字符串
"""
if seconds < 60:
return f"{seconds:.1f}秒"
elif seconds < 3600:
minutes = int(seconds / 60)
seconds = seconds % 60
return f"{minutes}分{seconds:.1f}秒"
else:
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
return f"{hours}小时{minutes}分钟"
def ui_get_queue_info():
"""获取队列信息的UI函数
Returns:
str: 包含队列信息的HTML
"""
queue_info = get_queue_status()
tasks_html = ""
for task in reversed(queue_info['recent_tasks']):
tasks_html += f"""
<tr>
<td>{task['task_id'][:8]}...</td>
<td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
<td>{format_time(task['process_time'])}</td>
</tr>
"""
# 如果没有任务历史,显示提示信息
if not tasks_html:
tasks_html = """
<tr>
<td colspan="3" style="text-align: center; padding: 20px;">暂无历史任务</td>
</tr>
"""
return f"""
<div class="dashboard">
<div class="queue-info-card main-card">
<h3 class="card-title">队列状态监控</h3>
<div class="queue-stats">
<div class="stat-item">
<div class="stat-value">{queue_info['waiting_tasks']}</div>
<div class="stat-label">等待中</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['active_tasks']}</div>
<div class="stat-label">处理中</div>
</div>
<div class="stat-item">
<div class="stat-value">{queue_info['worker_threads']}</div>
<div class="stat-label">工作线程</div>
</div>
</div>
<div class="wait-time">
<p><b>当前预计等待时间:</b> {format_time(queue_info['estimated_wait'])}</p>
<p class="last-update"><small>最后更新: {datetime.now().strftime('%H:%M:%S')}</small></p>
</div>
</div>
<div class="queue-info-card history-card">
<h3 class="card-title">最近处理的任务</h3>
<table class="recent-tasks">
<thead>
<tr>
<th>任务ID</th>
<th>请求时间</th>
<th>处理时间</th>
</tr>
</thead>
<tbody>
{tasks_html}
</tbody>
</table>
</div>
</div>
"""
def launch_workers():
"""启动工作线程"""
global running
running = True
# 创建工作线程
for _ in range(worker_threads):
worker = threading.Thread(target=queue_processor)
worker.daemon = True
worker.start()
# 自定义CSS
custom_css = """
.container {
max-width: 1200px;
margin: 0 auto;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.dashboard {
display: flex;
flex-direction: column;
gap: 20px;
}
.card-title {
color: #333;
border-bottom: 2px solid #ddd;
padding-bottom: 10px;
margin-top: 0;
}
.status-card, .queue-info-card {
background: #fff;
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}
.main-card {
border-top: 5px solid #4285f4;
}
.history-card {
border-top: 5px solid #34a853;
}
.status-card.success {
background: #e7f5e7;
border-left: 5px solid #28a745;
}
.status-card.error {
background: #f8d7da;
border-left: 5px solid #dc3545;
}
.error-message {
color: #dc3545;
font-weight: bold;
padding: 10px;
background: #f8d7da;
border-radius: 5px;
}
.notice {
color: #0c5460;
background-color: #d1ecf1;
padding: 10px;
border-radius: 5px;
}
.queue-stats {
display: flex;
justify-content: space-around;
margin: 20px 0;
}
.stat-item {
text-align: center;
padding: 15px;
background: #f8f9fa;
border-radius: 10px;
min-width: 120px;
transition: transform 0.3s ease;
}
.stat-item:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.stat-value {
font-size: 32px;
font-weight: bold;
color: #4285f4;
margin-bottom: 5px;
}
.stat-label {
color: #5f6368;
font-size: 16px;
}
.wait-time {
text-align: center;
margin: 20px 0;
padding: 15px;
background: #f1f3f4;
border-radius: 8px;
font-size: 18px;
}
.last-update {
color: #80868b;
margin-top: 10px;
margin-bottom: 0;
}
.recent-tasks {
width: 100%;
border-collapse: collapse;
margin-top: 15px;
background: white;
box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}
.recent-tasks th, .recent-tasks td {
border: 1px solid #e0e0e0;
padding: 12px 15px;
text-align: center;
}
.recent-tasks th {
background-color: #f1f3f4;
color: #202124;
font-weight: 500;
}
.recent-tasks tbody tr:hover {
background-color: #f8f9fa;
}
.tabs {
margin-top: 20px;
}
button.primary {
background-color: #4285f4;
color: white;
padding: 10px 20px;
border: none;
border-radius: 4px;
cursor: pointer;
font-size: 16px;
font-weight: 500;
transition: background-color 0.3s;
}
button.primary:hover {
background-color: #3367d6;
}
"""
# 初始化并启动工作线程
launch_workers()
# 创建Gradio接口
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# 代码评估服务")
gr.Markdown("支持多种编程语言的代码评估服务,采用队列机制处理请求")
with gr.Row():
with gr.Column(scale=3):
# 队列状态信息卡片
queue_info_html = gr.HTML()
refresh_queue_btn = gr.Button("刷新队列状态", variant="primary")
# 隐藏的API接口组件,不在UI上显示
with gr.Row(visible=False):
api_input = gr.JSON()
api_output = gr.JSON()
# 定义更新函数
def update_queue_info():
return ui_get_queue_info()
# 定时更新队列信息
demo.load(update_queue_info, None, queue_info_html, every=3)
# 刷新按钮事件
refresh_queue_btn.click(update_queue_info, None, queue_info_html)
# 添加兼容原有接口的评估端点,但不在UI显示
demo.queue()
evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")
if __name__ == "__main__":
try:
demo.launch()
finally:
# 停止工作线程
running = False |