File size: 23,967 Bytes
a27816a
 
 
30b1610
4f32597
a27816a
3499425
fc6c268
a3558a8
7032d9e
 
a3558a8
ccdd995
a3558a8
ccdd995
f41205f
30b1610
74d43a2
4f32597
74d43a2
4f32597
 
74d43a2
 
4f32597
a3558a8
621bc72
a3558a8
 
ccdd995
a3558a8
 
 
 
 
 
 
ccdd995
 
621bc72
a3558a8
 
 
621bc72
3ae05a4
a3558a8
 
 
 
621bc72
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621bc72
a3558a8
621bc72
a3558a8
 
 
621bc72
a3558a8
 
 
 
 
 
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
ccdd995
 
a3558a8
ccdd995
 
a3558a8
 
 
621bc72
 
a3558a8
 
 
621bc72
a3558a8
 
 
 
 
 
621bc72
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08681f4
 
30b1610
141e12d
3499425
141e12d
 
3499425
141e12d
 
3499425
 
 
 
a3558a8
e74db4f
a3558a8
 
 
 
 
 
 
 
 
 
3499425
141e12d
 
a3558a8
141e12d
 
 
 
08681f4
3499425
30b1610
08681f4
 
 
 
a27816a
 
 
3499425
 
52d43e7
3499425
 
52d43e7
3499425
 
 
 
 
4d4a4b6
0900021
08681f4
3499425
a3558a8
08681f4
 
22cec65
08681f4
 
 
 
 
 
30b1610
08681f4
 
 
 
f41205f
 
e18e210
30b1610
08681f4
 
30b1610
a3558a8
 
 
 
7032d9e
a3558a8
 
 
7032d9e
a3558a8
 
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
 
 
 
 
 
 
 
 
 
ccdd995
 
 
 
 
 
 
a3558a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
 
 
 
7032d9e
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
 
 
 
ccdd995
 
 
 
 
 
 
a3558a8
 
ccdd995
 
 
 
a3558a8
 
 
 
 
 
 
ccdd995
 
a3558a8
 
 
 
 
 
 
7032d9e
a3558a8
 
 
 
 
 
7032d9e
a3558a8
7032d9e
a3558a8
 
 
 
 
 
 
 
 
 
 
 
 
ccdd995
 
 
 
a3558a8
ccdd995
 
a3558a8
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae05a4
ccdd995
 
 
 
 
 
 
 
3ae05a4
ccdd995
 
 
3ae05a4
ccdd995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
621bc72
a3558a8
 
 
 
3ae05a4
a3558a8
621bc72
7032d9e
a3558a8
 
7032d9e
a3558a8
 
 
7032d9e
a3558a8
7032d9e
a3558a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621bc72
a3558a8
7032d9e
a3558a8
 
 
 
 
 
 
 
621bc72
a3558a8
8c0f360
 
 
 
 
 
 
 
a3558a8
8c0f360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
8c0f360
 
 
 
a3558a8
 
8c0f360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621bc72
 
 
a3558a8
3399cd9
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
8c0f360
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
621bc72
a3558a8
8c0f360
 
 
a3558a8
8c0f360
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c0f360
 
 
 
 
 
 
 
 
 
a3558a8
 
 
8c0f360
a3558a8
8c0f360
 
a3558a8
 
 
8c0f360
 
a3558a8
 
 
 
8c0f360
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
 
8c0f360
 
 
a3558a8
 
 
8c0f360
 
a3558a8
 
 
 
8c0f360
 
 
 
 
 
 
a3558a8
 
 
 
 
8c0f360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3558a8
 
 
 
edf1ecb
621bc72
a3558a8
 
 
edf1ecb
8c0f360
 
 
 
 
a3558a8
d4652ff
 
 
 
 
a3558a8
 
 
 
 
8c0f360
1bac4cd
8c0f360
a3558a8
edf1ecb
d4652ff
a3558a8
d4652ff
a3558a8
 
890be77
a3558a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
import gradio as gr
import json
import importlib
import os
import sys
from pathlib import Path
import concurrent.futures
import multiprocessing
import time
import threading
import queue
import uuid
import numpy as np
from datetime import datetime
from tqdm.auto import tqdm
from src.containerized_eval import eval_string_script

# 添加当前目录和src目录到模块搜索路径
current_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = os.path.join(current_dir, "src")
if current_dir not in sys.path:
    sys.path.append(current_dir)
if src_dir not in sys.path:
    sys.path.append(src_dir)

# 创建消息队列
task_queue = queue.Queue()
# 存储任务状态的字典
task_status = {}
# 存储任务历史的列表,最多保存最近20个任务
task_history = []
# 用于保护共享资源的锁
lock = threading.Lock()
# 工作线程数
worker_threads = multiprocessing.cpu_count()
# 后台线程是否运行的标志
running = True
# 任务类型到处理时间的映射
task_type_times = {}

def queue_processor():
    """处理队列中的任务"""
    while running:
        try:
            # 从队列中获取任务,如果队列为空等待0.1
            task_id, input_data, request_time = task_queue.get(timeout=0.1)
            with lock:
                task_status[task_id]['status'] = 'processing'
                task_status[task_id]['start_time'] = time.time()
            
            # 识别任务特征以估计完成时间
            # 例如:语言类型、代码大小等
            if isinstance(input_data, list) and len(input_data) > 0:
                sample_task = input_data[0]
                language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
                task_size = len(input_data)
                task_complexity = _estimate_task_complexity(input_data)
                
                with lock:
                    task_status[task_id]['estimated_factors'] = {
                        'language': language,
                        'size': task_size,
                        'complexity': task_complexity
                    }
            
            # 处理任务
            result = evaluate(input_data)
            
            # 更新任务状态
            end_time = time.time()
            process_time = end_time - task_status[task_id]['start_time']
            
            with lock:
                task_status[task_id]['status'] = 'completed'
                task_status[task_id]['result'] = result
                task_status[task_id]['end_time'] = end_time
                task_status[task_id]['process_time'] = process_time
                
                # 更新任务类型到处理时间的映射
                if 'estimated_factors' in task_status[task_id]:
                    factors = task_status[task_id]['estimated_factors']
                    key = f"{factors['language']}_{factors['complexity']}"
                    
                    if key not in task_type_times:
                        task_type_times[key] = []
                    
                    # 记录此类型任务的处理时间
                    task_type_times[key].append(process_time / factors['size'])
                    # 只保留最近的10个记录
                    if len(task_type_times[key]) > 10:
                        task_type_times[key] = task_type_times[key][-10:]
                
                # 更新任务历史
                task_history.append({
                    'task_id': task_id,
                    'request_time': request_time,
                    'process_time': process_time,
                    'status': 'completed',
                    'factors': task_status[task_id].get('estimated_factors', {})
                })
                # 只保留最近20个任务
                while len(task_history) > 20:
                    task_history.pop(0)
                    
            # 标记任务完成
            task_queue.task_done()
            
        except queue.Empty:
            # 队列为空,继续等待
            continue
        except Exception as e:
            if 'task_id' in locals():
                with lock:
                    task_status[task_id]['status'] = 'error'
                    task_status[task_id]['error'] = str(e)
                    task_status[task_id]['end_time'] = time.time()
            task_queue.task_done()

def _estimate_task_complexity(tasks):
    """估计任务复杂度
    
    Args:
        tasks: 任务列表
        
    Returns:
        str: 复杂度评级 ('simple', 'medium', 'complex')
    """
    # 基于代码和测试的长度评估复杂度
    total_code_length = 0
    count = 0
    
    for task in tasks:
        if isinstance(task, dict):
            prompt = task.get('prompt', '')
            tests = task.get('tests', '')
            completions = task.get('processed_completions', [])
            
            code_length = len(prompt) + len(tests)
            if completions:
                code_length += sum(len(comp) for comp in completions)
            
            total_code_length += code_length
            count += 1
    
    if count == 0:
        return 'medium'  # 默认中等复杂度
    
    avg_length = total_code_length / count
    
    if avg_length < 1000:
        return 'simple'
    elif avg_length < 5000:
        return 'medium'
    else:
        return 'complex'

def evaluate(input_data):
    """评估代码的主函数
    
    Args:
        input_data: 列表(批量处理多个测试用例)
        
    Returns:
        list: 包含评估结果的列表
    """
    try:
        if not isinstance(input_data, list):
            return {"status": "Exception", "error": "Input must be a list"}
            
        results = []
        max_workers = multiprocessing.cpu_count()
        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_item = {executor.submit(evaluate_single_case, item): item for item in input_data}
            for future in concurrent.futures.as_completed(future_to_item):
                item = future_to_item[future]
                try:
                    result = future.result()
                    item.update(result)
                    results.append(item)
                except Exception as e:
                    item.update({"status": "Exception", "error": str(e)})
                    results.append(item)
        return results
            
    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def evaluate_single_case(input_data):
    """评估单个代码用例
    
    Args:
        input_data: 字典(包含代码信息)
        
    Returns:
        dict: 包含评估结果的字典
    """
    try:
        if not isinstance(input_data, dict):
            return {"status": "Exception", "error": "Input item must be a dictionary"}
            
        language = input_data.get('language')
        completions = input_data.get('processed_completions', [])

        if not completions:
            return {"status": "Exception", "error": "No code provided"}

        results = []
        for comp in completions:
            code = input_data.get('prompt') + comp + '\n' + input_data.get('tests')
            result = evaluate_code(code, language)
            if result["status"] == "OK":
                return result
            results.append(result)
            
        return results[0]
                
    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def evaluate_code(code, language):
    """评估特定语言的代码
    
    Args:
        code (str): 要评估的代码
        language (str): 编程语言
        
    Returns:
        dict: 包含评估结果的字典
    """
    try:
        # 使用containerized_eval中的eval_string_script函数
        result = eval_string_script(language, code)
        return result

    except Exception as e:
        return {"status": "Exception", "error": str(e)}

def synchronous_evaluate(input_data):
    """同步评估代码,兼容原来的接口
    
    这个函数会阻塞直到评估完成,然后返回结果
    
    Args:
        input_data: 要评估的输入数据
        
    Returns:
        dict: 评估结果
    """
    # a) 估计此任务的特征
    if isinstance(input_data, list) and len(input_data) > 0:
        sample_task = input_data[0]
        language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
        task_size = len(input_data)
        task_complexity = _estimate_task_complexity(input_data)
    else:
        language = 'unknown'
        task_size = 1
        task_complexity = 'medium'
    
    # b) 估计完成时间用于前端显示
    estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
    estimated_total_time = estimated_time_per_task * task_size
    
    # 获取队列当前状态
    queue_info = get_queue_status()
    waiting_tasks = queue_info['waiting_tasks']
    
    # 创建任务
    task_id = str(uuid.uuid4())
    request_time = time.time()
    
    with lock:
        # 创建任务状态记录
        task_status[task_id] = {
            'status': 'queued',
            'queued_time': request_time,
            'queue_position': task_queue.qsize() + 1,
            'synchronous': True,  # 标记为同步任务
            'estimated_factors': {
                'language': language,
                'size': task_size,
                'complexity': task_complexity
            },
            'estimated_time': estimated_total_time
        }
    
    # 将任务添加到队列
    task_queue.put((task_id, input_data, request_time))
    
    # 等待任务完成
    while True:
        with lock:
            if task_id in task_status:
                status = task_status[task_id]['status']
                if status == 'completed':
                    result = task_status[task_id]['result']
                    # 任务完成后清理状态
                    task_status.pop(task_id, None)
                    return result
                elif status == 'error':
                    error = task_status[task_id].get('error', '未知错误')
                    # 任务出错后清理状态
                    task_status.pop(task_id, None)
                    return {"status": "Exception", "error": error}
        
        # 短暂睡眠避免CPU占用过高
        time.sleep(0.1)

def _get_estimated_time_for_task(language, complexity):
    """获取特定类型任务的估计处理时间
    
    Args:
        language: 编程语言
        complexity: 任务复杂度
        
    Returns:
        float: 估计的处理时间(秒)
    """
    key = f"{language}_{complexity}"
    
    # 如果有历史数据,使用中位数作为估计值
    if key in task_type_times and len(task_type_times[key]) > 0:
        return np.median(task_type_times[key])
    
    # 否则使用基于复杂度的默认估计值
    if complexity == 'simple':
        return 1.0
    elif complexity == 'medium':
        return 3.0
    else:  # complex
        return 8.0

def enqueue_task(input_data):
    """将任务添加到队列
    
    Args:
        input_data: 要处理的任务数据
        
    Returns:
        dict: 包含任务ID和状态的字典
    """
    # 估计任务特征和处理时间
    if isinstance(input_data, list) and len(input_data) > 0:
        sample_task = input_data[0]
        language = sample_task.get('language', 'unknown') if isinstance(sample_task, dict) else 'unknown'
        task_size = len(input_data)
        task_complexity = _estimate_task_complexity(input_data)
    else:
        language = 'unknown'
        task_size = 1
        task_complexity = 'medium'
    
    estimated_time_per_task = _get_estimated_time_for_task(language, task_complexity)
    estimated_total_time = estimated_time_per_task * task_size
    
    task_id = str(uuid.uuid4())
    request_time = time.time()
    
    with lock:
        # 创建任务状态记录
        task_status[task_id] = {
            'status': 'queued',
            'queued_time': request_time,
            'queue_position': task_queue.qsize() + 1,
            'estimated_factors': {
                'language': language,
                'size': task_size,
                'complexity': task_complexity
            },
            'estimated_time': estimated_total_time
        }
    
    # 获取队列状态以计算等待时间
    queue_info = get_queue_status()
    est_wait = queue_info['estimated_wait']
    
    # 将任务添加到队列
    task_queue.put((task_id, input_data, request_time))
    
    return {
        'task_id': task_id,
        'status': 'queued',
        'queue_position': task_status[task_id]['queue_position'],
        'estimated_wait': est_wait,
        'estimated_processing': estimated_total_time
    }

def check_status(task_id):
    """检查任务状态
    
    Args:
        task_id: 任务ID
        
    Returns:
        dict: 包含任务状态的字典
    """
    with lock:
        if task_id not in task_status:
            return {'status': 'not_found'}
        
        status_info = task_status[task_id].copy()
        
        # 如果任务已完成,从状态字典中移除(避免内存泄漏)
        if status_info['status'] in ['completed', 'error'] and time.time() - status_info.get('end_time', 0) > 3600:
            task_status.pop(task_id, None)
            
        return status_info

def get_queue_status():
    """获取队列状态
    
    Returns:
        dict: 包含队列状态的字典
    """
    with lock:
        # 获取队列中的所有任务
        queued_tasks = [t for t in task_status.values() if t['status'] == 'queued']
        processing_tasks = [t for t in task_status.values() if t['status'] == 'processing']
        
        queue_size = task_queue.qsize()
        active_tasks = len(processing_tasks)
        waiting_tasks = len(queued_tasks)
        
        # 更准确地估计等待时间
        # 1. 计算当前处理中任务的剩余时间
        remaining_processing_time = 0
        for task in processing_tasks:
            # 如果任务有开始时间和估计总时间
            if 'start_time' in task and 'estimated_time' in task:
                elapsed = time.time() - task['start_time']
                # 剩余时间 = 估计总时间 - 已经过去的时间
                remaining = max(0, task['estimated_time'] - elapsed)
                remaining_processing_time += remaining
            else:
                # 默认假设还需要2秒
                remaining_processing_time += 2
        
        # 使用动态均衡:根据工作线程数量平衡负载
        if active_tasks > 0:
            remaining_processing_time = remaining_processing_time / min(active_tasks, worker_threads)
        
        # 2. 计算排队中任务的估计处理时间
        queued_processing_time = 0
        for task in queued_tasks:
            if 'estimated_time' in task:
                queued_processing_time += task['estimated_time']
            else:
                # 默认假设每个任务5秒
                queued_processing_time += 5
        
        # 考虑并行处理:分摊到可用工作线程
        if worker_threads > 0 and queued_processing_time > 0:
            queued_processing_time = queued_processing_time / worker_threads
        
        # 总估计等待时间
        estimated_wait = remaining_processing_time + queued_processing_time
        
        # 应用统计校正:使用历史数据调整预测
        if task_history:
            # 计算历史预测与实际处理时间的比例
            prediction_ratios = []
            for task in task_history:
                if 'factors' in task and 'estimated_time' in task:
                    prediction_ratios.append(task['process_time'] / task['estimated_time'])
            
            # 如果有足够数据,使用中位数比例调整当前预测
            if prediction_ratios:
                correction_factor = np.median(prediction_ratios)
                # 应用校正因子,但限制在合理范围内
                correction_factor = max(0.5, min(2.0, correction_factor))
                estimated_wait *= correction_factor
        
        # 确保等待时间有意义
        estimated_wait = max(0.1, estimated_wait)
        if waiting_tasks == 0 and active_tasks == 0:
            estimated_wait = 0
            
        # 获取最近处理的任务
        recent_tasks = task_history[-5:] if task_history else []
            
        return {
            'queue_size': queue_size,
            'active_tasks': active_tasks,
            'waiting_tasks': waiting_tasks,
            'worker_threads': worker_threads,
            'estimated_wait': estimated_wait,
            'recent_tasks': recent_tasks
        }

def format_time(seconds):
    """格式化时间为易读格式
    
    Args:
        seconds: 秒数
        
    Returns:
        str: 格式化的时间字符串
    """
    if seconds < 60:
        return f"{seconds:.1f}秒"
    elif seconds < 3600:
        minutes = int(seconds / 60)
        seconds = seconds % 60
        return f"{minutes}{seconds:.1f}秒"
    else:
        hours = int(seconds / 3600)
        minutes = int((seconds % 3600) / 60)
        return f"{hours}小时{minutes}分钟"

def ui_get_queue_info():
    """获取队列信息的UI函数
    
    Returns:
        str: 包含队列信息的HTML
    """
    queue_info = get_queue_status()
    
    tasks_html = ""
    for task in reversed(queue_info['recent_tasks']):
        tasks_html += f"""
        <tr>
            <td>{task['task_id'][:8]}...</td>
            <td>{datetime.fromtimestamp(task['request_time']).strftime('%H:%M:%S')}</td>
            <td>{format_time(task['process_time'])}</td>
        </tr>
        """
    
    # 如果没有任务历史,显示提示信息
    if not tasks_html:
        tasks_html = """
        <tr>
            <td colspan="3" style="text-align: center; padding: 20px;">暂无历史任务</td>
        </tr>
        """
    
    return f"""
    <div class="dashboard">
        <div class="queue-info-card main-card">
            <h3 class="card-title">队列状态监控</h3>
            <div class="queue-stats">
                <div class="stat-item">
                    <div class="stat-value">{queue_info['waiting_tasks']}</div>
                    <div class="stat-label">等待中</div>
                </div>
                <div class="stat-item">
                    <div class="stat-value">{queue_info['active_tasks']}</div>
                    <div class="stat-label">处理中</div>
                </div>
                <div class="stat-item">
                    <div class="stat-value">{queue_info['worker_threads']}</div>
                    <div class="stat-label">工作线程</div>
                </div>
            </div>
            
            <div class="wait-time">
                <p><b>当前预计等待时间:</b> {format_time(queue_info['estimated_wait'])}</p>
                <p class="last-update"><small>最后更新: {datetime.now().strftime('%H:%M:%S')}</small></p>
            </div>
        </div>
            
        <div class="queue-info-card history-card">
            <h3 class="card-title">最近处理的任务</h3>
            <table class="recent-tasks">
                <thead>
                    <tr>
                        <th>任务ID</th>
                        <th>请求时间</th>
                        <th>处理时间</th>
                    </tr>
                </thead>
                <tbody>
                    {tasks_html}
                </tbody>
            </table>
        </div>
    </div>
    """

def launch_workers():
    """启动工作线程"""
    global running
    running = True
    
    # 创建工作线程
    for _ in range(worker_threads):
        worker = threading.Thread(target=queue_processor)
        worker.daemon = True
        worker.start()

# 自定义CSS
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}

.dashboard {
    display: flex;
    flex-direction: column;
    gap: 20px;
}

.card-title {
    color: #333;
    border-bottom: 2px solid #ddd;
    padding-bottom: 10px;
    margin-top: 0;
}

.status-card, .queue-info-card {
    background: #fff;
    border-radius: 12px;
    padding: 20px;
    margin: 10px 0;
    box-shadow: 0 4px 15px rgba(0,0,0,0.08);
}

.main-card {
    border-top: 5px solid #4285f4;
}

.history-card {
    border-top: 5px solid #34a853;
}

.status-card.success {
    background: #e7f5e7;
    border-left: 5px solid #28a745;
}

.status-card.error {
    background: #f8d7da;
    border-left: 5px solid #dc3545;
}

.error-message {
    color: #dc3545;
    font-weight: bold;
    padding: 10px;
    background: #f8d7da;
    border-radius: 5px;
}

.notice {
    color: #0c5460;
    background-color: #d1ecf1;
    padding: 10px;
    border-radius: 5px;
}

.queue-stats {
    display: flex;
    justify-content: space-around;
    margin: 20px 0;
}

.stat-item {
    text-align: center;
    padding: 15px;
    background: #f8f9fa;
    border-radius: 10px;
    min-width: 120px;
    transition: transform 0.3s ease;
}

.stat-item:hover {
    transform: translateY(-5px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}

.stat-value {
    font-size: 32px;
    font-weight: bold;
    color: #4285f4;
    margin-bottom: 5px;
}

.stat-label {
    color: #5f6368;
    font-size: 16px;
}

.wait-time {
    text-align: center;
    margin: 20px 0;
    padding: 15px;
    background: #f1f3f4;
    border-radius: 8px;
    font-size: 18px;
}

.last-update {
    color: #80868b;
    margin-top: 10px;
    margin-bottom: 0;
}

.recent-tasks {
    width: 100%;
    border-collapse: collapse;
    margin-top: 15px;
    background: white;
    box-shadow: 0 1px 3px rgba(0,0,0,0.05);
}

.recent-tasks th, .recent-tasks td {
    border: 1px solid #e0e0e0;
    padding: 12px 15px;
    text-align: center;
}

.recent-tasks th {
    background-color: #f1f3f4;
    color: #202124;
    font-weight: 500;
}

.recent-tasks tbody tr:hover {
    background-color: #f8f9fa;
}

.tabs {
    margin-top: 20px;
}

button.primary {
    background-color: #4285f4;
    color: white;
    padding: 10px 20px;
    border: none;
    border-radius: 4px;
    cursor: pointer;
    font-size: 16px;
    font-weight: 500;
    transition: background-color 0.3s;
}

button.primary:hover {
    background-color: #3367d6;
}
"""

# 初始化并启动工作线程
launch_workers()

# 创建Gradio接口
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("# 代码评估服务")
    gr.Markdown("支持多种编程语言的代码评估服务,采用队列机制处理请求")
    
    with gr.Row():
        with gr.Column(scale=3):
            # 队列状态信息卡片
            queue_info_html = gr.HTML()
            refresh_queue_btn = gr.Button("刷新队列状态", variant="primary")
    
    # 隐藏的API接口组件,不在UI上显示
    with gr.Row(visible=False):
        api_input = gr.JSON()
        api_output = gr.JSON()
    
    # 定义更新函数
    def update_queue_info():
        return ui_get_queue_info()
    
    # 定时更新队列信息
    demo.load(update_queue_info, None, queue_info_html, every=3)
    
    # 刷新按钮事件
    refresh_queue_btn.click(update_queue_info, None, queue_info_html)
    
    # 添加兼容原有接口的评估端点,但不在UI显示
    demo.queue()
    evaluate_endpoint = demo.load(fn=synchronous_evaluate, inputs=api_input, outputs=api_output, api_name="evaluate")

if __name__ == "__main__":
    try:
        demo.launch()
    finally:
        # 停止工作线程
        running = False