MedCoDi-M / core /common /utils.py
dmolino's picture
Upload 276 files
168a510 verified
raw
history blame contribute delete
14.3 kB
import random
import torch
from collections import OrderedDict
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
from torchvision import transforms as tvtrans
from decord import VideoReader, cpu, gpu
###############
# text helper #
###############
def remove_duplicate_word(tx):
def combine_words(input, length):
combined_inputs = []
if len(splitted_input) > 1:
for i in range(len(input) - 1):
combined_inputs.append(input[i] + " " + last_word_of(splitted_input[i + 1],
length)) # add the last word of the right-neighbour (overlapping) sequence (before it has expanded), which is the next word in the original sentence
return combined_inputs, length + 1
def remove_duplicates(input, length):
bool_broke = False #this means we didn't find any duplicates here
for i in range(len(input) - length):
if input[i] == input[i + length]: #found a duplicate piece of sentence!
for j in range(0, length): #remove the overlapping sequences in reverse order
del input[i + length - j]
bool_broke = True
break #break the for loop as the loop length does not matches the length of splitted_input anymore as we removed elements
if bool_broke:
return remove_duplicates(input,
length) #if we found a duplicate, look for another duplicate of the same length
return input
def last_word_of(input, length):
splitted = input.split(" ")
if len(splitted) == 0:
return input
else:
return splitted[length - 1]
def split_and_puncsplit(text):
tx = text.split(" ")
txnew = []
for txi in tx:
txqueue = []
while True:
if txi[0] in '([{':
txqueue.extend([txi[:1], '<puncnext>'])
txi = txi[1:]
if len(txi) == 0:
break
else:
break
txnew += txqueue
txstack = []
if len(txi) == 0:
continue
while True:
if txi[-1] in '?!.,:;}])':
txstack = ['<puncnext>', txi[-1:]] + txstack
txi = txi[:-1]
if len(txi) == 0:
break
else:
break
if len(txi) != 0:
txnew += [txi]
txnew += txstack
return txnew
if tx == '':
return tx
splitted_input = split_and_puncsplit(tx)
word_length = 1
intermediate_output = False
while len(splitted_input) > 1:
splitted_input = remove_duplicates(splitted_input, word_length)
if len(splitted_input) > 1:
splitted_input, word_length = combine_words(splitted_input, word_length)
if intermediate_output:
print(splitted_input)
print(word_length)
output = splitted_input[0]
output = output.replace(' <puncnext> ', '')
return output
#################
# vision helper #
#################
def regularize_image(x, image_size=512):
if isinstance(x, str):
x = Image.open(x)
size = min(x.size)
elif isinstance(x, Image.Image):
x = x.convert('RGB')
size = min(x.size)
elif isinstance(x, np.ndarray):
x = Image.fromarray(x).convert('RGB')
size = min(x.size)
elif isinstance(x, torch.Tensor):
# normalize to [0, 1]
size = min(x.size()[1:])
else:
assert False, 'Unknown image type'
"""transforms = T.Compose([
T.RandomCrop(size),
T.Resize(
(image_size, image_size),
interpolation=BICUBIC,
),
T.RandomHorizontalFlip(),
T.ToTensor(),
])
x = transforms(x)
assert (x.shape[1] == image_size) & (x.shape[2] == image_size), \
'Wrong image size'
"""
x = x * 2 - 1
return x
def center_crop(img, new_width=None, new_height=None):
width = img.shape[2]
height = img.shape[1]
if new_width is None:
new_width = min(width, height)
if new_height is None:
new_height = min(width, height)
left = int(np.ceil((width - new_width) / 2))
right = width - int(np.floor((width - new_width) / 2))
top = int(np.ceil((height - new_height) / 2))
bottom = height - int(np.floor((height - new_height) / 2))
if len(img.shape) == 3:
center_cropped_img = img[:, top:bottom, left:right]
else:
center_cropped_img = img[:, top:bottom, left:right, ...]
return center_cropped_img
def _transform(n_px):
return Compose([
Resize([n_px, n_px], interpolation=T.InterpolationMode.BICUBIC), ])
def regularize_video(video, image_size=256):
min_shape = min(video.shape[1:3])
video = center_crop(video, min_shape, min_shape)
video = torch.from_numpy(video).permute(0, 3, 1, 2)
video = _transform(image_size)(video)
video = video / 255.0 * 2.0 - 1.0
return video.permute(1, 0, 2, 3)
def time_to_indices(video_reader, time):
times = video_reader.get_frame_timestamp(range(len(video_reader))).mean(-1)
indices = np.searchsorted(times, time)
# Use `np.bitwise_or` so it works both with scalars and numpy arrays.
return np.where(np.bitwise_or(indices == 0, times[indices] - time <= time - times[indices - 1]), indices,
indices - 1)
def load_video(video_path, sample_duration=8.0, num_frames=8):
sample_duration = 4.0
num_frames = 4
vr = VideoReader(video_path, ctx=cpu(0))
framerate = vr.get_avg_fps()
video_frame_len = len(vr)
video_len = video_frame_len / framerate
sample_duration = min(sample_duration, video_len)
if video_len > sample_duration:
s = random.random() * (video_len - sample_duration)
t = s + sample_duration
start, end = time_to_indices(vr, [s, t])
end = min(video_frame_len - 1, end)
start = min(start, end - 1)
downsamlp_indices = np.linspace(start, end, num_frames, endpoint=True).astype(int).tolist()
else:
downsamlp_indices = np.linspace(0, video_frame_len - 1, num_frames, endpoint=True).astype(int).tolist()
video = vr.get_batch(downsamlp_indices).asnumpy()
return video
###############
# some helper #
###############
def atomic_save(cfg, net, opt, step, path):
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
sd = netm.state_dict()
slimmed_sd = [(ki, vi) for ki, vi in sd.items()
if ki.find('first_stage_model') != 0 and ki.find('cond_stage_model') != 0]
checkpoint = {
"config": cfg,
"state_dict": OrderedDict(slimmed_sd),
"step": step}
if opt is not None:
checkpoint['optimizer_states'] = opt.state_dict()
import io
import fsspec
bytesbuffer = io.BytesIO()
torch.save(checkpoint, bytesbuffer)
with fsspec.open(path, "wb") as f:
f.write(bytesbuffer.getvalue())
def load_state_dict(net, cfg):
pretrained_pth_full = cfg.get('pretrained_pth_full', None)
pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None)
pretrained_pth = cfg.get('pretrained_pth', None)
pretrained_ckpt = cfg.get('pretrained_ckpt', None)
pretrained_pth_dm = cfg.get('pretrained_pth_dm', None)
pretrained_pth_ema = cfg.get('pretrained_pth_ema', None)
strict_sd = cfg.get('strict_sd', False)
errmsg = "Overlapped model state_dict! This is undesired behavior!"
if pretrained_pth_full is not None or pretrained_ckpt_full is not None:
assert (pretrained_pth is None) and \
(pretrained_ckpt is None) and \
(pretrained_pth_dm is None) and \
(pretrained_pth_ema is None), errmsg
if pretrained_pth_full is not None:
target_file = pretrained_pth_full
sd = torch.load(target_file, map_location='cpu')
assert pretrained_ckpt is None, errmsg
else:
target_file = pretrained_ckpt_full
sd = torch.load(target_file, map_location='cpu')['state_dict']
print('Load full model from [{}] strict [{}].'.format(
target_file, strict_sd))
net.load_state_dict(sd, strict=strict_sd)
if pretrained_pth is not None or pretrained_ckpt is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth_dm is None) and \
(pretrained_pth_ema is None), errmsg
if pretrained_pth is not None:
target_file = pretrained_pth
sd = torch.load(target_file, map_location='cpu')
assert pretrained_ckpt is None, errmsg
else:
target_file = pretrained_ckpt
sd = torch.load(target_file, map_location='cpu')['state_dict']
print('Load model from [{}] strict [{}].'.format(
target_file, strict_sd))
sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \
if ki.find('first_stage_model') == 0 or ki.find('cond_stage_model') == 0]
sd.update(OrderedDict(sd_extra))
net.load_state_dict(sd, strict=strict_sd)
if pretrained_pth_dm is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth is None) and \
(pretrained_ckpt is None), errmsg
print('Load diffusion model from [{}] strict [{}].'.format(
pretrained_pth_dm, strict_sd))
sd = torch.load(pretrained_pth_dm, map_location='cpu')
net.model.diffusion_model.load_state_dict(sd, strict=strict_sd)
if pretrained_pth_ema is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth is None) and \
(pretrained_ckpt is None), errmsg
print('Load unet ema model from [{}] strict [{}].'.format(
pretrained_pth_ema, strict_sd))
sd = torch.load(pretrained_pth_ema, map_location='cpu')
net.model_ema.load_state_dict(sd, strict=strict_sd)
def auto_merge_imlist(imlist, max=64):
imlist = imlist[0:max]
h, w = imlist[0].shape[0:2]
num_images = len(imlist)
num_row = int(np.sqrt(num_images))
num_col = num_images // num_row + 1 if num_images % num_row != 0 else num_images // num_row
canvas = np.zeros([num_row * h, num_col * w, 3], dtype=np.uint8)
for idx, im in enumerate(imlist):
hi = (idx // num_col) * h
wi = (idx % num_col) * w
canvas[hi:hi + h, wi:wi + w, :] = im
return canvas
def latent2im(net, latent):
single_input = len(latent.shape) == 3
if single_input:
latent = latent[None]
im = net.decode_image(latent.to(net.device))
im = torch.clamp((im + 1.0) / 2.0, min=0.0, max=1.0)
im = [tvtrans.ToPILImage()(i) for i in im]
if single_input:
im = im[0]
return im
def im2latent(net, im):
single_input = not isinstance(im, list)
if single_input:
im = [im]
im = torch.stack([tvtrans.ToTensor()(i) for i in im], dim=0)
im = (im * 2 - 1).to(net.device)
z = net.encode_image(im)
if single_input:
z = z[0]
return z
class color_adjust(object):
def __init__(self, ref_from, ref_to):
x0, m0, std0 = self.get_data_and_stat(ref_from)
x1, m1, std1 = self.get_data_and_stat(ref_to)
self.ref_from_stat = (m0, std0)
self.ref_to_stat = (m1, std1)
self.ref_from = self.preprocess(x0).reshape(-1, 3)
self.ref_to = x1.reshape(-1, 3)
def get_data_and_stat(self, x):
if isinstance(x, str):
x = np.array(PIL.Image.open(x))
elif isinstance(x, PIL.Image.Image):
x = np.array(x)
elif isinstance(x, torch.Tensor):
x = torch.clamp(x, min=0.0, max=1.0)
x = np.array(tvtrans.ToPILImage()(x))
elif isinstance(x, np.ndarray):
pass
else:
raise ValueError
x = x.astype(float)
m = np.reshape(x, (-1, 3)).mean(0)
s = np.reshape(x, (-1, 3)).std(0)
return x, m, s
def preprocess(self, x):
m0, s0 = self.ref_from_stat
m1, s1 = self.ref_to_stat
y = ((x - m0) / s0) * s1 + m1
return y
def __call__(self, xin, keep=0, simple=False):
xin, _, _ = self.get_data_and_stat(xin)
x = self.preprocess(xin)
if simple:
y = (x * (1 - keep) + xin * keep)
y = np.clip(y, 0, 255).astype(np.uint8)
return y
h, w = x.shape[:2]
x = x.reshape(-1, 3)
y = []
for chi in range(3):
yi = self.pdf_transfer_1d(self.ref_from[:, chi], self.ref_to[:, chi], x[:, chi])
y.append(yi)
y = np.stack(y, axis=1)
y = y.reshape(h, w, 3)
y = (y.astype(float) * (1 - keep) + xin.astype(float) * keep)
y = np.clip(y, 0, 255).astype(np.uint8)
return y
def pdf_transfer_1d(self, arr_fo, arr_to, arr_in, n=600):
arr = np.concatenate((arr_fo, arr_to))
min_v = arr.min() - 1e-6
max_v = arr.max() + 1e-6
min_vto = arr_to.min() - 1e-6
max_vto = arr_to.max() + 1e-6
xs = np.array(
[min_v + (max_v - min_v) * i / n for i in range(n + 1)])
hist_fo, _ = np.histogram(arr_fo, xs)
hist_to, _ = np.histogram(arr_to, xs)
xs = xs[:-1]
# compute probability distribution
cum_fo = np.cumsum(hist_fo)
cum_to = np.cumsum(hist_to)
d_fo = cum_fo / cum_fo[-1]
d_to = cum_to / cum_to[-1]
# transfer
t_d = np.interp(d_fo, d_to, xs)
t_d[d_fo <= d_to[0]] = min_vto
t_d[d_fo >= d_to[-1]] = max_vto
arr_out = np.interp(arr_in, xs, t_d)
return arr_out