from typing import * import torch import torch.nn.functional as F from torchvision import transforms import numpy as np from PIL import Image from ....utils import dist_utils class ImageConditionedMixin: """ Mixin for image-conditioned models. Args: image_cond_model: The image conditioning model. """ def __init__(self, *args, image_cond_model: str = 'dinov2_vitl14_reg', **kwargs): super().__init__(*args, **kwargs) self.image_cond_model_name = image_cond_model self.image_cond_model = None # the model is init lazily @staticmethod def prepare_for_training(image_cond_model: str, **kwargs): """ Prepare for training. """ if hasattr(super(ImageConditionedMixin, ImageConditionedMixin), 'prepare_for_training'): super(ImageConditionedMixin, ImageConditionedMixin).prepare_for_training(**kwargs) # download the model torch.hub.load('facebookresearch/dinov2', image_cond_model, pretrained=True) def _init_image_cond_model(self): """ Initialize the image conditioning model. """ with dist_utils.local_master_first(): dinov2_model = torch.hub.load('facebookresearch/dinov2', self.image_cond_model_name, pretrained=True) dinov2_model.eval().cuda() transform = transforms.Compose([ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) self.image_cond_model = { 'model': dinov2_model, 'transform': transform, } @torch.no_grad() def encode_image(self, image: Union[torch.Tensor, List[Image.Image]]) -> torch.Tensor: """ Encode the image. """ if isinstance(image, torch.Tensor): assert image.ndim == 4, "Image tensor should be batched (B, C, H, W)" elif isinstance(image, list): assert all(isinstance(i, Image.Image) for i in image), "Image list should be list of PIL images" image = [i.resize((518, 518), Image.LANCZOS) for i in image] image = [np.array(i.convert('RGB')).astype(np.float32) / 255 for i in image] image = [torch.from_numpy(i).permute(2, 0, 1).float() for i in image] image = torch.stack(image).cuda() else: raise ValueError(f"Unsupported type of image: {type(image)}") if self.image_cond_model is None: self._init_image_cond_model() image = self.image_cond_model['transform'](image).cuda() features = self.image_cond_model['model'](image, is_training=True)['x_prenorm'] patchtokens = F.layer_norm(features, features.shape[-1:]) return patchtokens def get_cond(self, cond, **kwargs): """ Get the conditioning data. """ cond = self.encode_image(cond) kwargs['neg_cond'] = torch.zeros_like(cond) cond = super().get_cond(cond, **kwargs) return cond def get_inference_cond(self, cond, **kwargs): """ Get the conditioning data for inference. """ cond = self.encode_image(cond) kwargs['neg_cond'] = torch.zeros_like(cond) cond = super().get_inference_cond(cond, **kwargs) return cond def vis_cond(self, cond, **kwargs): """ Visualize the conditioning data. """ return {'image': {'value': cond, 'type': 'image'}}