import os import json import argparse import numpy as np import pandas as pd from tqdm import tqdm from easydict import EasyDict as edict from concurrent.futures import ThreadPoolExecutor if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_dir', type=str, required=True, help='Directory to save the metadata') parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, help='Filter objects with aesthetic score lower than this value') parser.add_argument('--model', type=str, default='dinov2_vitl14_reg_slat_enc_swin8_B_64l8_fp16', help='Latent model to use') parser.add_argument('--num_samples', type=int, default=50000, help='Number of samples to use for calculating stats') opt = parser.parse_args() opt = edict(vars(opt)) # get file list if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) else: raise ValueError('metadata.csv not found') if opt.filter_low_aesthetic_score is not None: metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] metadata = metadata[metadata[f'latent_{opt.model}'] == True] sha256s = metadata['sha256'].values sha256s = np.random.choice(sha256s, min(opt.num_samples, len(sha256s)), replace=False) # stats means = [] mean2s = [] with ThreadPoolExecutor(max_workers=16) as executor, \ tqdm(total=len(sha256s), desc="Extracting features") as pbar: def worker(sha256): try: feats = np.load(os.path.join(opt.output_dir, 'latents', opt.model, f'{sha256}.npz')) feats = feats['feats'] means.append(feats.mean(axis=0)) mean2s.append((feats ** 2).mean(axis=0)) pbar.update() except Exception as e: print(f"Error extracting features for {sha256}: {e}") pbar.update() executor.map(worker, sha256s) executor.shutdown(wait=True) mean = np.array(means).mean(axis=0) mean2 = np.array(mean2s).mean(axis=0) std = np.sqrt(mean2 - mean ** 2) print('mean:', mean) print('std:', std) with open(os.path.join(opt.output_dir, 'latents', opt.model, 'stats.json'), 'w') as f: json.dump({ 'mean': mean.tolist(), 'std': std.tolist(), }, f, indent=4)