import gradio as gr import spaces import os import shutil import json import torch import numpy as np import imageio from easydict import EasyDict as edict from trellis.pipelines import TrellisTextTo3DPipeline from trellis.representations import Gaussian, MeshExtractResult from trellis.utils import render_utils, postprocessing_utils import traceback import sys import time # If psutil is available in the environment, we can use it for memory info try: import psutil PSUTIL_AVAILABLE = True except ImportError: PSUTIL_AVAILABLE = False # --- Environment Variables --- os.environ['TOKENIZERS_PARALLELISM'] = 'true' os.environ['SPCONV_ALGO'] = 'native' # --------------------------- from typing import * # Add JSON encoder for NumPy arrays class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj) MAX_SEED = np.iinfo(np.int32).max TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') os.makedirs(TMP_DIR, exist_ok=True) def start_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) def end_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) # Use shutil.rmtree with ignore_errors=True for robustness shutil.rmtree(user_dir, ignore_errors=True) def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: return { 'gaussian': { **gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy(), }, 'mesh': { 'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy(), }, } def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: gs = Gaussian( aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'], ) # Ensure tensors are created on the correct device ('cuda') gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda', dtype=torch.float32) gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda', dtype=torch.float32) gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda', dtype=torch.float32) gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda', dtype=torch.float32) gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda', dtype=torch.float32) mesh = edict( vertices=torch.tensor(state['mesh']['vertices'], device='cuda', dtype=torch.float32), faces=torch.tensor(state['mesh']['faces'], device='cuda', dtype=torch.int64), # Faces are usually integers ) return gs, mesh def get_seed(randomize_seed: bool, seed: int) -> int: """ Get the random seed. """ return np.random.randint(0, MAX_SEED) if randomize_seed else seed @spaces.GPU def text_to_3d( prompt: str, seed: int, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int, req: gr.Request, ) -> dict: # MODIFIED: Now returns only the state dict """ Convert a text prompt to a 3D model state object. Args: prompt (str): The text prompt. seed (int): The random seed. ss_guidance_strength (float): The guidance strength for sparse structure generation. ss_sampling_steps (int): The number of sampling steps for sparse structure generation. slat_guidance_strength (float): The guidance strength for structured latent generation. slat_sampling_steps (int): The number of sampling steps for structured latent generation. Returns: dict: The JSON-serializable state object containing the generated 3D model info. """ # Ensure user directory exists (redundant if start_session is always called, but safe) user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) print(f"[{req.session_hash}] Running text_to_3d for prompt: {prompt}") # Add logging outputs = pipeline.run( prompt, seed=seed, formats=["gaussian", "mesh"], sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) # REMOVED: Video rendering logic moved to render_preview_video # Create the state object and ensure it's JSON serializable for API calls state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) # Convert to serializable format serializable_state = json.loads(json.dumps(state, cls=NumpyEncoder)) print(f"[{req.session_hash}] text_to_3d completed. Returning state.") # Modified log message torch.cuda.empty_cache() # --- REVERTED DEBUGGING --- # Remove the temporary simple dictionary return # print("[DEBUG] Returning simple dict for API test.") # return {"status": "test_success", "received_prompt": prompt} # --- END REVERTED DEBUGGING --- # Original return line (restored): return serializable_state # MODIFIED: Return only state # --- NEW FUNCTION --- @spaces.GPU def render_preview_video(state: dict, req: gr.Request) -> str: """ Renders a preview video from the provided state object. Args: state (dict): The state object containing Gaussian and mesh data. req (gr.Request): Gradio request object for session hash. Returns: str: The path to the rendered video file. """ if not state: print(f"[{req.session_hash}] render_preview_video called with empty state. Returning None.") return None user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) # Ensure directory exists print(f"[{req.session_hash}] Unpacking state for video rendering.") # Only unpack gs, as mesh causes type errors with render_utils after unpacking gs, _ = unpack_state(state) # We still need the mesh for GLB, but not for this video preview print(f"[{req.session_hash}] Rendering video (Gaussian only)...") # Render ONLY the Gaussian splats, as rendering the unpacked mesh fails video = render_utils.render_video(gs, num_frames=120)['color'] # REMOVED: video_geo = render_utils.render_video(mesh, num_frames=120)['normal'] # REMOVED: video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] video_path = os.path.join(user_dir, 'preview_sample.mp4') print(f"[{req.session_hash}] Saving video to {video_path}") # Save only the Gaussian render imageio.mimsave(video_path, video, fps=15) torch.cuda.empty_cache() return video_path # --- END NEW FUNCTION --- @spaces.GPU(duration=90) def extract_glb( state: dict, mesh_simplify: float, texture_size: int, req: gr.Request, ) -> Tuple[str, str]: """ Extract a GLB file from the 3D model state. Args: state (dict): The state of the generated 3D model. mesh_simplify (float): The mesh simplification factor. texture_size (int): The texture resolution. Returns: str: The path to the extracted GLB file (for Model3D component). str: The path to the extracted GLB file (for DownloadButton). """ if not state: print(f"[{req.session_hash}] extract_glb called with empty state. Returning None.") return None, None # Return Nones if state is missing user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) print(f"[{req.session_hash}] Unpacking state for GLB extraction.") # Add logging gs, mesh = unpack_state(state) print(f"[{req.session_hash}] Extracting GLB (simplify={mesh_simplify}, texture={texture_size})...") # Add logging glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = os.path.join(user_dir, 'sample.glb') print(f"[{req.session_hash}] Saving GLB to {glb_path}") # Add logging glb.export(glb_path) torch.cuda.empty_cache() # Return the same path for both Model3D and DownloadButton components return glb_path, glb_path @spaces.GPU def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: """ Extract a Gaussian PLY file from the 3D model state. Args: state (dict): The state of the generated 3D model. Returns: str: The path to the extracted Gaussian file (for Model3D component). str: The path to the extracted Gaussian file (for DownloadButton). """ if not state: print(f"[{req.session_hash}] extract_gaussian called with empty state. Returning None.") return None, None # Return Nones if state is missing user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) print(f"[{req.session_hash}] Unpacking state for Gaussian extraction.") # Add logging gs, _ = unpack_state(state) gaussian_path = os.path.join(user_dir, 'sample.ply') print(f"[{req.session_hash}] Saving Gaussian PLY to {gaussian_path}") # Add logging gs.save_ply(gaussian_path) torch.cuda.empty_cache() # Return the same path for both Model3D and DownloadButton components return gaussian_path, gaussian_path # --- NEW COMBINED API FUNCTION (with HEAVY logging) --- @spaces.GPU(duration=120) def generate_and_extract_glb( prompt: str, seed: int, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int, mesh_simplify: float, texture_size: int, req: Optional[gr.Request] = None, # Make req optional for robustness ) -> Optional[str]: """ Combines 3D model generation and GLB extraction into a single step for API usage, avoiding the need to transfer the state object. Includes extensive logging. Args: prompt (str): Text prompt for generation. seed (int): Random seed. ss_guidance_strength (float): Sparse structure guidance. ss_sampling_steps (int): Sparse structure steps. slat_guidance_strength (float): Structured latent guidance. slat_sampling_steps (int): Structured latent steps. mesh_simplify (float): Mesh simplification factor for GLB. texture_size (int): Texture resolution for GLB. req (Optional[gr.Request]): Gradio request object. Returns: Optional[str]: Path to the generated GLB file or None on failure. """ # --- Setup & Initial Logging --- pid = os.getpid() session_hash = f"API_CALL_{pid}_{int(time.time()*1000)}" # More unique ID for API calls if req and hasattr(req, 'session_hash') and req.session_hash: session_hash = req.session_hash # Use session hash if available from UI call print(f"\n[{session_hash}] ========= generate_and_extract_glb INVOKED =========") print(f"[{session_hash}] API: PID: {pid}") if PSUTIL_AVAILABLE: process = psutil.Process(pid) mem_info_start = process.memory_info() print(f"[{session_hash}] API: Initial Memory: RSS={mem_info_start.rss / (1024**2):.2f} MB, VMS={mem_info_start.vms / (1024**2):.2f} MB") else: print(f"[{session_hash}] API: psutil not available, cannot log memory usage.") user_dir = os.path.join(TMP_DIR, str(session_hash)) try: print(f"[{session_hash}] API: Ensuring directory exists: {user_dir}") os.makedirs(user_dir, exist_ok=True) print(f"[{session_hash}] API: Directory ensured.") except Exception as e: print(f"[{session_hash}] API: FATAL ERROR creating directory {user_dir}: {e}") traceback.print_exc() print(f"[{session_hash}] ========= generate_and_extract_glb FAILED (Directory Creation) =========") return None print(f"[{session_hash}] API: Input Params: Prompt='{prompt}', Seed={seed}, Simplify={mesh_simplify}, Texture={texture_size}") print(f"[{session_hash}] API: Input Params: SS Steps={ss_sampling_steps}, SS Cfg={ss_guidance_strength}, Slat Steps={slat_sampling_steps}, Slat Cfg={slat_guidance_strength}") # Check CUDA availability cuda_available = torch.cuda.is_available() print(f"[{session_hash}] API: torch.cuda.is_available(): {cuda_available}") if not cuda_available: print(f"[{session_hash}] API: FATAL ERROR - CUDA not available!") print(f"[{session_hash}] ========= generate_and_extract_glb FAILED (CUDA Unavailable) =========") return None gs_output = None mesh_output = None glb_path = None # --- Step 1: Generate 3D Model --- print(f"\n[{session_hash}] API: --- Starting Step 1: Generation Pipeline --- ") try: if pipeline is None: print(f"[{session_hash}] API: FATAL ERROR - `pipeline` object is None!") raise ValueError("Trellis pipeline is not loaded.") print(f"[{session_hash}] API: Step 1 - Calling pipeline.run()...") t_start_gen = time.time() # --- The actual pipeline call --- outputs = pipeline.run( prompt, seed=seed, formats=["gaussian", "mesh"], sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) # --- End pipeline call --- t_end_gen = time.time() print(f"[{session_hash}] API: Step 1 - pipeline.run() completed in {t_end_gen - t_start_gen:.2f}s.") # === Validate pipeline outputs === print(f"[{session_hash}] API: Step 1 - Validating pipeline outputs...") if not outputs: print(f"[{session_hash}] API: ERROR - Pipeline output dictionary is None or empty.") raise ValueError("Pipeline returned empty output.") if 'gaussian' not in outputs or not outputs['gaussian']: print(f"[{session_hash}] API: ERROR - Pipeline output missing 'gaussian' key or value is empty.") raise ValueError("Pipeline output missing Gaussian result.") if 'mesh' not in outputs or not outputs['mesh']: print(f"[{session_hash}] API: ERROR - Pipeline output missing 'mesh' key or value is empty.") raise ValueError("Pipeline output missing Mesh result.") gs_output = outputs['gaussian'][0] mesh_output = outputs['mesh'][0] if gs_output is None: print(f"[{session_hash}] API: ERROR - Pipeline returned gs_output as None.") raise ValueError("Pipeline returned None for Gaussian output.") if mesh_output is None: print(f"[{session_hash}] API: ERROR - Pipeline returned mesh_output as None.") raise ValueError("Pipeline returned None for Mesh output.") print(f"[{session_hash}] API: Step 1 - Outputs validated successfully.") print(f"[{session_hash}] API: Step 1 - gs_output type: {type(gs_output)}") # Add more details if useful, e.g., number of Gaussians if hasattr(gs_output, '_xyz'): print(f"[{session_hash}] API: Step 1 - gs_output num points: {len(gs_output._xyz)}") print(f"[{session_hash}] API: Step 1 - mesh_output type: {type(mesh_output)}") # Add more details if useful, e.g., number of vertices/faces if hasattr(mesh_output, 'vertices') and hasattr(mesh_output, 'faces'): print(f"[{session_hash}] API: Step 1 - mesh_output verts: {len(mesh_output.vertices)}, faces: {len(mesh_output.faces)}") # ================================= if PSUTIL_AVAILABLE: mem_info_after_gen = process.memory_info() print(f"[{session_hash}] API: Memory After Gen: RSS={mem_info_after_gen.rss / (1024**2):.2f} MB, VMS={mem_info_after_gen.vms / (1024**2):.2f} MB") except Exception as e_gen: print(f"\n[{session_hash}] API: ******** ERROR IN STEP 1: Generation Pipeline ********") print(f"[{session_hash}] API: Error Type: {type(e_gen).__name__}, Message: {e_gen}") print(f"[{session_hash}] API: Printing traceback...") traceback.print_exc() print(f"[{session_hash}] API: ********************************************************") gs_output = None # Ensure reset on error mesh_output = None # Fall through to finally block for cleanup finally: # Attempt cleanup regardless of success/failure in try block print(f"[{session_hash}] API: Step 1 - Entering finally block for potential cleanup.") try: print(f"[{session_hash}] API: Step 1 - Attempting CUDA cache clear (finally)...") torch.cuda.empty_cache() print(f"[{session_hash}] API: Step 1 - CUDA cache cleared (finally).") except Exception as cache_e_gen: print(f"[{session_hash}] API: WARNING - Error clearing CUDA cache in Step 1 finally block: {cache_e_gen}") print(f"[{session_hash}] API: --- Finished Step 1: Generation Pipeline (gs valid: {gs_output is not None}, mesh valid: {mesh_output is not None}) --- \n") # --- Step 2: Extract GLB --- # Proceed only if Step 1 was successful if gs_output is not None and mesh_output is not None: print(f"\n[{session_hash}] API: --- Starting Step 2: GLB Extraction --- ") try: print(f"[{session_hash}] API: Step 2 - Inputs: gs type {type(gs_output)}, mesh type {type(mesh_output)}") print(f"[{session_hash}] API: Step 2 - Params: Simplify={mesh_simplify}, Texture Size={texture_size}") print(f"[{session_hash}] API: Step 2 - Calling postprocessing_utils.to_glb()...") t_start_glb = time.time() # --- The actual GLB conversion call --- glb = postprocessing_utils.to_glb(gs_output, mesh_output, simplify=mesh_simplify, texture_size=texture_size, verbose=False) # --- End GLB conversion call --- t_end_glb = time.time() print(f"[{session_hash}] API: Step 2 - postprocessing_utils.to_glb() completed in {t_end_glb - t_start_glb:.2f}s.") # === Validate GLB output === print(f"[{session_hash}] API: Step 2 - Validating GLB object...") if glb is None: print(f"[{session_hash}] API: ERROR - postprocessing_utils.to_glb returned None.") raise ValueError("GLB conversion returned None.") print(f"[{session_hash}] API: Step 2 - GLB object validated successfully (type: {type(glb)})...") # ========================== # === Save GLB === glb_path = os.path.join(user_dir, f'api_generated_{session_hash}_{int(time.time()*1000)}.glb') # More unique name print(f"[{session_hash}] API: Step 2 - Saving GLB to path: {glb_path}...") t_start_save = time.time() # --- The actual GLB export call --- glb.export(glb_path) # --- End GLB export call --- t_end_save = time.time() print(f"[{session_hash}] API: Step 2 - glb.export() completed in {t_end_save - t_start_save:.2f}s.") # ================= # === Verify File Exists === print(f"[{session_hash}] API: Step 2 - Verifying saved file exists at {glb_path}...") if not os.path.exists(glb_path): print(f"[{session_hash}] API: ERROR - GLB file was not found after export at {glb_path}.") raise IOError(f"GLB export failed, file not found: {glb_path}") print(f"[{session_hash}] API: Step 2 - Saved file verified.") # ========================= print(f"[{session_hash}] API: Step 2 - GLB extraction and saving completed successfully.") if PSUTIL_AVAILABLE: mem_info_after_glb = process.memory_info() print(f"[{session_hash}] API: Memory After GLB: RSS={mem_info_after_glb.rss / (1024**2):.2f} MB, VMS={mem_info_after_glb.vms / (1024**2):.2f} MB") except Exception as e_glb: print(f"\n[{session_hash}] API: ******** ERROR IN STEP 2: GLB Extraction ********") print(f"[{session_hash}] API: Error Type: {type(e_glb).__name__}, Message: {e_glb}") print(f"[{session_hash}] API: Printing traceback...") traceback.print_exc() print(f"[{session_hash}] API: *****************************************************") glb_path = None # Ensure reset on error # Fall through to finally block for cleanup finally: # Attempt cleanup regardless of success/failure in try block print(f"[{session_hash}] API: Step 2 - Entering finally block for potential cleanup.") # Explicitly delete large objects if possible (might help memory) del glb print(f"[{session_hash}] API: Step 2 - Deleted intermediate 'glb' object.") try: print(f"[{session_hash}] API: Step 2 - Attempting CUDA cache clear (finally)...") torch.cuda.empty_cache() print(f"[{session_hash}] API: Step 2 - CUDA cache cleared (finally).") except Exception as cache_e_glb: print(f"[{session_hash}] API: WARNING - Error clearing CUDA cache in Step 2 finally block: {cache_e_glb}") print(f"[{session_hash}] API: --- Finished Step 2: GLB Extraction (path valid: {glb_path is not None}) --- \n") else: print(f"[{session_hash}] API: Skipping Step 2 (GLB Extraction) because Step 1 failed or produced invalid outputs.") glb_path = None # Ensure glb_path is None if Step 1 failed # --- Final Cleanup and Return --- print(f"[{session_hash}] API: --- Entering Final Cleanup and Return --- ") # Final attempt to clear CUDA cache try: print(f"[{session_hash}] API: Final CUDA cache clear attempt...") torch.cuda.empty_cache() print(f"[{session_hash}] API: Final CUDA cache cleared.") except Exception as cache_e_final: print(f"[{session_hash}] API: WARNING - Error clearing final CUDA cache: {cache_e_final}") # Explicitly delete pipeline outputs if they exist del gs_output del mesh_output print(f"[{session_hash}] API: Deleted intermediate 'gs_output' and 'mesh_output' objects.") # Final decision based on glb_path status if glb_path and os.path.exists(glb_path): print(f"[{session_hash}] API: Final Result: SUCCESS. GLB Path: {glb_path}") print(f"[{session_hash}] ========= generate_and_extract_glb END (Success) =========") return glb_path else: print(f"[{session_hash}] API: Final Result: FAILURE. GLB Path: {glb_path} (Exists: {os.path.exists(glb_path) if glb_path else 'N/A'})") print(f"[{session_hash}] ========= generate_and_extract_glb END (Failure) =========") return None # --- END NEW COMBINED API FUNCTION --- # State object to hold the generated model info between steps output_buf = gr.State() # Video component placeholder (will be populated by render_preview_video) # video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) # Defined later inside the Blocks with gr.Blocks(delete_cache=(600, 600)) as demo: gr.Markdown(""" ## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/) * Type a text prompt and click "Generate" to create a 3D asset. * The preview video will appear after generation. * If you find the generated 3D asset satisfactory, click "Extract GLB" or "Extract Gaussian" to extract the file and download it. """) with gr.Row(): with gr.Column(): text_prompt = gr.Textbox(label="Text Prompt", lines=5) with gr.Accordion(label="Generation Settings", open=False): seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) gr.Markdown("Stage 1: Sparse Structure Generation") with gr.Row(): ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) gr.Markdown("Stage 2: Structured Latent Generation") with gr.Row(): slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) generate_btn = gr.Button("Generate") with gr.Accordion(label="GLB Extraction Settings", open=False): mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) with gr.Row(): # Buttons start non-interactive, enabled after generation extract_glb_btn = gr.Button("Extract GLB", interactive=False) extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) gr.Markdown(""" *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* """) with gr.Column(): # Define UI components here video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300) model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300) with gr.Row(): # Buttons start non-interactive, enabled after extraction download_glb = gr.DownloadButton(label="Download GLB", interactive=False) download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) # Define the state buffer here, outside the component definitions but inside the Blocks scope output_buf = gr.State() # --- Handlers --- demo.load(start_session) demo.unload(end_session) # --- MODIFIED UI CHAIN --- # 1. Get Seed # 2. Run text_to_3d -> outputs state to output_buf # 3. Run render_preview_video (using state from output_buf) -> outputs video to video_output # 4. Enable extraction buttons generate_btn.click( get_seed, inputs=[randomize_seed, seed], outputs=[seed], queue=True # Use queue for potentially long-running steps ).then( text_to_3d, inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], outputs=[output_buf], # text_to_3d now ONLY outputs state api_name="text_to_3d" # Keep API name consistent if needed ).then( render_preview_video, # NEW step: Render video from state inputs=[output_buf], outputs=[video_output], api_name="render_preview_video" # Assign API name if you want to call this separately ).then( lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), # Enable extraction buttons outputs=[extract_glb_btn, extract_gs_btn], ) # Clear video and disable extraction buttons if prompt is cleared or generation restarted # (Consider adding logic to clear prompt on successful generation if desired) text_prompt.change( # Example: Clear video if prompt changes lambda: (None, gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[video_output, extract_glb_btn, extract_gs_btn] ) video_output.clear( # This might be redundant if text_prompt.change handles it lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), outputs=[extract_glb_btn, extract_gs_btn], ) # --- Extraction Handlers --- # GLB Extraction: Takes state from output_buf, outputs model and download path extract_glb_btn.click( extract_glb, inputs=[output_buf, mesh_simplify, texture_size], outputs=[model_output, download_glb], # Outputs to Model3D and DownloadButton path api_name="extract_glb" ).then( lambda: gr.Button(interactive=True), # Enable download button outputs=[download_glb], ) # Gaussian Extraction: Takes state from output_buf, outputs model and download path extract_gs_btn.click( extract_gaussian, inputs=[output_buf], outputs=[model_output, download_gs], # Outputs to Model3D and DownloadButton path api_name="extract_gaussian" ).then( lambda: gr.Button(interactive=True), # Enable download button outputs=[download_gs], ) # Clear model and disable download buttons if video/state is cleared model_output.clear( lambda: (gr.Button(interactive=False), gr.Button(interactive=False)), outputs=[download_glb, download_gs], # Disable both download buttons ) # --- Launch the Gradio app --- if __name__ == "__main__": print("Initializing pipeline...") pipeline = None # Initialize pipeline variable try: # Load the pipeline pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge") # Move pipeline to CUDA device pipeline.cuda() print("Pipeline loaded and moved to CUDA successfully.") except Exception as e: print(f"FATAL ERROR initializing pipeline: {e}") traceback.print_exc() # Optionally exit if pipeline loading fails sys.exit(1) print("Launching Gradio demo with queue enabled...") demo.queue().launch()