PUM4CH3N commited on
Commit
4d2a9aa
·
1 Parent(s): 42e27b9
app.py CHANGED
@@ -120,11 +120,11 @@ def text_to_3d(
120
  "cfg_strength": slat_guidance_strength,
121
  },
122
  )
123
- # video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
124
- # video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
125
- # video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
126
  video_path = os.path.join(user_dir, 'sample.mp4')
127
- # imageio.mimsave(video_path, video, fps=15)
128
  state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
129
  torch.cuda.empty_cache()
130
  return state, video_path
 
120
  "cfg_strength": slat_guidance_strength,
121
  },
122
  )
123
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
124
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
125
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
126
  video_path = os.path.join(user_dir, 'sample.mp4')
127
+ imageio.mimsave(video_path, video, fps=15)
128
  state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
129
  torch.cuda.empty_cache()
130
  return state, video_path
trellis/pipelines/trellis_text_to_3d.py CHANGED
@@ -220,15 +220,10 @@ class TrellisTextTo3DPipeline(Pipeline):
220
  slat_sampler_params (dict): Additional parameters for the structured latent sampler.
221
  formats (List[str]): The formats to decode the structured latent to.
222
  """
223
- print(0)
224
  cond = self.get_cond([prompt])
225
- print(1)
226
  torch.manual_seed(seed)
227
- print(2)
228
  coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
229
- print(3)
230
  slat = self.sample_slat(cond, coords, slat_sampler_params)
231
- print(4)
232
  return self.decode_slat(slat, formats)
233
  '''
234
  def voxelize(self, mesh: o3d.geometry.TriangleMesh) -> torch.Tensor:
 
220
  slat_sampler_params (dict): Additional parameters for the structured latent sampler.
221
  formats (List[str]): The formats to decode the structured latent to.
222
  """
 
223
  cond = self.get_cond([prompt])
 
224
  torch.manual_seed(seed)
 
225
  coords = self.sample_sparse_structure(cond, num_samples, sparse_structure_sampler_params)
 
226
  slat = self.sample_slat(cond, coords, slat_sampler_params)
 
227
  return self.decode_slat(slat, formats)
228
  '''
229
  def voxelize(self, mesh: o3d.geometry.TriangleMesh) -> torch.Tensor: