Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import os | |
import shutil | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from trellis.pipelines import TrellisTextTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from gradio.processing_utils import move_resource_to_block_cache | |
import traceback | |
import sys | |
import logging | |
import requests | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
logging.basicConfig(level=logging.INFO) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
""" | |
Get the random seed. | |
""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def text_to_3d( | |
prompt: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
""" | |
Convert an text prompt to a 3D model. | |
Args: | |
prompt (str): The text prompt. | |
seed (int): The random seed. | |
ss_guidance_strength (float): The guidance strength for sparse structure generation. | |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. | |
slat_guidance_strength (float): The guidance strength for structured latent generation. | |
slat_sampling_steps (int): The number of sampling steps for structured latent generation. | |
Returns: | |
dict: The information of the generated 3D model. | |
str: The path to the video of the 3D model. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
outputs = pipeline.run( | |
prompt, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
""" | |
Extract a GLB file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
mesh_simplify (float): The mesh simplification factor. | |
texture_size (int): The texture resolution. | |
Returns: | |
str: The path to the extracted GLB file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: | |
""" | |
Extract a Gaussian file from the 3D model. | |
Args: | |
state (dict): The state of the generated 3D model. | |
Returns: | |
str: The path to the extracted Gaussian file. | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
gs, _ = unpack_state(state) | |
gaussian_path = os.path.join(user_dir, 'sample.ply') | |
gs.save_ply(gaussian_path) | |
torch.cuda.empty_cache() | |
return gaussian_path, gaussian_path | |
def generate_and_extract_glb( | |
prompt: str, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> str: | |
""" | |
Runs the full text_to_3d and extract_glb pipeline internally, | |
then uploads the GLB to the Node.js server and returns the persistent URL. | |
""" | |
request_hash = str(req.session_hash)[:8] | |
logging.info(f"[{request_hash}] ENTER generate_and_extract_glb") | |
logging.info(f"[{request_hash}] Received parameters: prompt='{prompt}', seed={seed}, simplify={mesh_simplify}, tex_size={texture_size}, ...") | |
NODE_SERVER_UPLOAD_URL = "https://viverse-backend.onrender.com/api/upload-rigged-model" | |
try: | |
logging.info(f"[{request_hash}] Calling internal text_to_3d...") | |
state, _ = text_to_3d( | |
prompt, seed, ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps, req | |
) | |
if state is None: | |
logging.error(f"[{request_hash}] Internal text_to_3d returned None state!") | |
raise ValueError("Internal text_to_3d failed to return state") | |
logging.info(f"[{request_hash}] Internal text_to_3d completed. State type: {type(state)}") | |
logging.info(f"[{request_hash}] Calling internal extract_glb...") | |
glb_path, _ = extract_glb( | |
state, mesh_simplify, texture_size, req | |
) | |
if glb_path is None: | |
logging.error(f"[{request_hash}] Internal extract_glb returned None path!") | |
raise ValueError("Internal extract_glb failed to return GLB path") | |
if not os.path.isfile(glb_path): | |
logging.error(f"[{request_hash}] GLB file not found at path: {glb_path}") | |
raise FileNotFoundError(f"Generated GLB file not found at {glb_path}") | |
logging.info(f"[{request_hash}] Internal extract_glb completed. GLB path: {glb_path}") | |
logging.info(f"[{request_hash}] Uploading GLB from {glb_path} to {NODE_SERVER_UPLOAD_URL}") | |
persistent_url = None | |
try: | |
with open(glb_path, "rb") as f: | |
files = {"modelFile": (os.path.basename(glb_path), f, "model/gltf-binary")} | |
payload = { | |
"clientType": "playcanvas", | |
"prompt": prompt, | |
"modelStage": "trellis_tpose" | |
} | |
logging.info(f"[{request_hash}] Upload payload: {payload}") | |
response = requests.post(NODE_SERVER_UPLOAD_URL, files=files, data=payload) | |
response.raise_for_status() | |
result = response.json() | |
persistent_url = result.get("persistentUrl") | |
if not persistent_url: | |
logging.error(f"[{request_hash}] No persistent URL in Node.js server response: {result}") | |
raise ValueError("Upload successful, but no persistent URL returned") | |
logging.info(f"[{request_hash}] Successfully uploaded to Node server. Persistent URL: {persistent_url}") | |
except requests.exceptions.RequestException as upload_err: | |
logging.error(f"[{request_hash}] FAILED to upload GLB to Node server: {upload_err}") | |
if hasattr(upload_err, 'response') and upload_err.response is not None: | |
logging.error(f"[{request_hash}] Node server response status: {upload_err.response.status_code}") | |
logging.error(f"[{request_hash}] Node server response text: {upload_err.response.text}") | |
raise gr.Error(f"Failed to upload result to backend server: {upload_err}") | |
except Exception as e: | |
logging.error(f"[{request_hash}] UNEXPECTED error during upload: {e}", exc_info=True) | |
raise gr.Error(f"Unexpected error during upload: {e}") | |
logging.info(f"[{request_hash}] EXIT generate_and_extract_glb - Returning persistent URL: {persistent_url}") | |
return persistent_url | |
except Exception as e: | |
logging.error(f"[{request_hash}] ERROR in generate_and_extract_glb pipeline: {e}", exc_info=True) | |
raise gr.Error(f"Pipeline failed: {e}") | |
output_buf = gr.State() | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## Text to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
* Type a text prompt and click "Generate" to create a 3D asset. | |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
text_prompt = gr.Textbox(label="Text Prompt", lines=5) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=25, step=1) | |
generate_btn = gr.Button("Generate") | |
with gr.Accordion(label="GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
with gr.Row(): | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) | |
gr.Markdown(""" | |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* | |
""") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300) | |
with gr.Row(): | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) | |
output_buf = gr.State() | |
# --- Add this section to explicitly register the API function --- | |
with gr.Row(visible=False): # Hide this row in the UI | |
api_trigger_btn = gr.Button("API Trigger") | |
dummy_output_for_api = gr.Textbox(visible=False) # Output type doesn't matter much here | |
dummy_inputs_for_api = [ | |
text_prompt, seed, ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps, mesh_simplify, texture_size | |
] | |
api_trigger_btn.click( | |
generate_and_extract_glb, | |
inputs=dummy_inputs_for_api, # Define inputs needed | |
outputs=[dummy_output_for_api], # Define an output | |
api_name="generate_and_extract_glb" # CRITICAL: Register the API name | |
) | |
# --- End API registration section --- | |
# Handlers | |
demo.load(start_session) | |
demo.unload(end_session) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
text_to_3d, | |
inputs=[text_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
video_output.clear( | |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), | |
outputs=[extract_glb_btn, extract_gs_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
extract_gs_btn.click( | |
extract_gaussian, | |
inputs=[output_buf], | |
outputs=[model_output, download_gs], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_gs], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
pipeline = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge") | |
pipeline.cuda() | |
# Explicitly allow serving files from the base temp dir and the Gradio cache dir | |
allowed_paths = [TMP_DIR, "/tmp/gradio"] | |
print(f"Launching Gradio demo with allowed_paths: {allowed_paths}") | |
demo.launch(allowed_paths=allowed_paths) |