import streamlit as st import pickle import re from sklearn.feature_extraction.text import CountVectorizer with open('count_vectorizer.pkl','rb')as vectorizer_file: count_vectorizer = pickle.load(vectorizer_file) with open('nb_classifier.pkl','rb')as classifier_file: nb_classifier = pickle.load(classifier_file) def process_text(text): text = text.lower() text = re.sub(r'http\S+', '', text) text = re.sub(r'@[a-zA-Z0-9_]+', '', text) text = re.sub(r'#', '', text) text = re.sub(r'[^a-zA-Z\s]', '', text) return text sentiment_mapping = { "Negative" : "Negative 😔", "Positive" : "Positive 😊", "Neutral" : "Neutral 🙄", "Irrelevant" : "Irrelevant 🤷‍♂️" } def main(): col1 , col2 , col3 ,col4 = st.columns([1,1,3,1]) with col3: st.image("./pngwing.com (1).png" , width=100) st.title("Twitter Sentiment Classifier") st.write("Enter twitter tweet below :") input_text = st.text_area("Input Text :","") if st.button("Predict"): cleaned_text = process_text(input_text) vectorizer_text = count_vectorizer.transform([cleaned_text]) sentiment_prediction = nb_classifier.predict(vectorizer_text)[0] predicted_sentiment = sentiment_mapping.get(sentiment_prediction , "Unknown Sentiment") st.write("Predicted Sentimen :") st.title(predicted_sentiment) if __name__ == "__main__": main()