---
title: README
emoji: 🏢
colorFrom: gray
colorTo: green
sdk: static
pinned: false
---
This organization holds the artifacts for our research conducted on enabling reasoning in diffusion-based image synthesis models. Our first
effort in this line of research is **ReflectionFlow**, where we introduce the first ever large-scale dataset, **GenRef**, suitable for
reflection-tuning.
Below, we provide the links related to ReflectionFlow:
* [ReflectionFlow paper](https://arxiv.org/abs/2504.16080)
* [Projection website](https://diffusion-cot.github.io/reflection2perfection/)
* [Models and datasets](https://huggingface.co/collections/diffusion-cot/reflectionflow-release-6803e14352b1b13a16aeda44)
* [Code](https://github.com/Diffusion-CoT/ReflectionFlow)
Citation
```bibtex
misc{zhuo2025reflectionperfectionscalinginferencetime,
title={From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning},
author={Le Zhuo and Liangbing Zhao and Sayak Paul and Yue Liao and Renrui Zhang and Yi Xin and Peng Gao and Mohamed Elhoseiny and Hongsheng Li},
year={2025},
eprint={2504.16080},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.16080},
}
```
Enjoy 🤗