Spaces:
Running
As a work-around, this would be fine...
Browse filesThis is a workaround for **a problem where the size of the fp16 file created stays the same as the fp32**... same problem in the SDXL conversion space and local environment. I think it was happening at least about 6 months ago when I first converted my files... I forgot to report this.
https://huggingface.co/spaces/diffusers/sdxl-to-diffusers
The workaround is fine with code like this, but the real problem is that **.to(torch.float16) doesn't seem to work**.
I have not verified whether the file size is still 32 bits but only the internal precision is 16 bits, but perhaps it is not working as expected.
**If this is indeed a bug, it would be better to fix that bug rather than merge this commit**.
The **torch_dtype=torch.float16 at load time works fine**, so this workaround works.
## Before fix
https://huggingface.co/John6666/convtest2
## After fix
https://huggingface.co/John6666/convtest3
- convert.py +105 -103
@@ -1,103 +1,105 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import os
|
4 |
-
import shutil
|
5 |
-
from pathlib import Path
|
6 |
-
import tempfile
|
7 |
-
from tempfile import TemporaryDirectory
|
8 |
-
|
9 |
-
|
10 |
-
from typing import Optional
|
11 |
-
|
12 |
-
import torch
|
13 |
-
from io import BytesIO
|
14 |
-
|
15 |
-
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
|
16 |
-
from huggingface_hub.file_download import repo_folder_name
|
17 |
-
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
18 |
-
download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
|
19 |
-
)
|
20 |
-
from transformers import CONFIG_MAPPING
|
21 |
-
|
22 |
-
|
23 |
-
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}"
|
24 |
-
|
25 |
-
|
26 |
-
def convert_single(model_id: str, token:str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress):
|
27 |
-
from_safetensors = filename.endswith(".safetensors")
|
28 |
-
|
29 |
-
progress(0, desc="Downloading model")
|
30 |
-
local_file = os.path.join(model_id, filename)
|
31 |
-
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename, token=token)
|
32 |
-
|
33 |
-
if model_type == "v1":
|
34 |
-
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
35 |
-
elif model_type == "v2":
|
36 |
-
if sample_size == 512:
|
37 |
-
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
|
38 |
-
else:
|
39 |
-
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
40 |
-
elif model_type == "ControlNet":
|
41 |
-
config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
|
42 |
-
config_url = "https://huggingface.co/" + str(config_url)
|
43 |
-
|
44 |
-
#config_file = BytesIO(requests.get(config_url).content)
|
45 |
-
|
46 |
-
response = requests.get(config_url)
|
47 |
-
with tempfile.NamedTemporaryFile(delete=False, mode='wb') as tmp_file:
|
48 |
-
tmp_file.write(response.content)
|
49 |
-
temp_config_file_path = tmp_file.name
|
50 |
-
|
51 |
-
if model_type == "ControlNet":
|
52 |
-
progress(0.2, desc="Converting ControlNet Model")
|
53 |
-
pipeline = download_controlnet_from_original_ckpt(ckpt_file, temp_config_file_path, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
|
54 |
-
to_args = {"dtype": torch.float16}
|
55 |
-
else:
|
56 |
-
progress(0.1, desc="Converting Model")
|
57 |
-
pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, temp_config_file_path, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
|
58 |
-
to_args = {"torch_dtype": torch.float16}
|
59 |
-
|
60 |
-
pipeline.save_pretrained(folder)
|
61 |
-
pipeline.save_pretrained(folder, safe_serialization=True)
|
62 |
-
|
63 |
-
pipeline = pipeline.to(**to_args)
|
64 |
-
|
65 |
-
pipeline.
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
from pathlib import Path
|
6 |
+
import tempfile
|
7 |
+
from tempfile import TemporaryDirectory
|
8 |
+
|
9 |
+
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from io import BytesIO
|
14 |
+
|
15 |
+
from huggingface_hub import CommitInfo, Discussion, HfApi, hf_hub_download
|
16 |
+
from huggingface_hub.file_download import repo_folder_name
|
17 |
+
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
18 |
+
download_from_original_stable_diffusion_ckpt, download_controlnet_from_original_ckpt
|
19 |
+
)
|
20 |
+
from transformers import CONFIG_MAPPING
|
21 |
+
|
22 |
+
|
23 |
+
COMMIT_MESSAGE = " This PR adds fp32 and fp16 weights in PyTorch and safetensors format to {}"
|
24 |
+
|
25 |
+
|
26 |
+
def convert_single(model_id: str, token:str, filename: str, model_type: str, sample_size: int, scheduler_type: str, extract_ema: bool, folder: str, progress):
|
27 |
+
from_safetensors = filename.endswith(".safetensors")
|
28 |
+
|
29 |
+
progress(0, desc="Downloading model")
|
30 |
+
local_file = os.path.join(model_id, filename)
|
31 |
+
ckpt_file = local_file if os.path.isfile(local_file) else hf_hub_download(repo_id=model_id, filename=filename, token=token)
|
32 |
+
|
33 |
+
if model_type == "v1":
|
34 |
+
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
35 |
+
elif model_type == "v2":
|
36 |
+
if sample_size == 512:
|
37 |
+
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference.yaml"
|
38 |
+
else:
|
39 |
+
config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
40 |
+
elif model_type == "ControlNet":
|
41 |
+
config_url = (Path(model_id)/"resolve/main"/filename).with_suffix(".yaml")
|
42 |
+
config_url = "https://huggingface.co/" + str(config_url)
|
43 |
+
|
44 |
+
#config_file = BytesIO(requests.get(config_url).content)
|
45 |
+
|
46 |
+
response = requests.get(config_url)
|
47 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='wb') as tmp_file:
|
48 |
+
tmp_file.write(response.content)
|
49 |
+
temp_config_file_path = tmp_file.name
|
50 |
+
|
51 |
+
if model_type == "ControlNet":
|
52 |
+
progress(0.2, desc="Converting ControlNet Model")
|
53 |
+
pipeline = download_controlnet_from_original_ckpt(ckpt_file, temp_config_file_path, image_size=sample_size, from_safetensors=from_safetensors, extract_ema=extract_ema)
|
54 |
+
to_args = {"dtype": torch.float16}
|
55 |
+
else:
|
56 |
+
progress(0.1, desc="Converting Model")
|
57 |
+
pipeline = download_from_original_stable_diffusion_ckpt(ckpt_file, temp_config_file_path, image_size=sample_size, scheduler_type=scheduler_type, from_safetensors=from_safetensors, extract_ema=extract_ema)
|
58 |
+
to_args = {"torch_dtype": torch.float16}
|
59 |
+
|
60 |
+
pipeline.save_pretrained(folder)
|
61 |
+
pipeline.save_pretrained(folder, safe_serialization=True)
|
62 |
+
|
63 |
+
#pipeline = pipeline.to(**to_args)
|
64 |
+
from diffusers import StableDiffusionPipeline
|
65 |
+
pipeline = StableDiffusionPipeline.from_pretrained(folder, use_safetensors=True, torch_dtype=torch.float16)
|
66 |
+
pipeline.save_pretrained(folder, variant="fp16")
|
67 |
+
pipeline.save_pretrained(folder, safe_serialization=True, variant="fp16")
|
68 |
+
|
69 |
+
return folder
|
70 |
+
|
71 |
+
|
72 |
+
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
|
73 |
+
try:
|
74 |
+
discussions = api.get_repo_discussions(repo_id=model_id)
|
75 |
+
except Exception:
|
76 |
+
return None
|
77 |
+
for discussion in discussions:
|
78 |
+
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
|
79 |
+
details = api.get_discussion_details(repo_id=model_id, discussion_num=discussion.num)
|
80 |
+
if details.target_branch == "refs/heads/main":
|
81 |
+
return discussion
|
82 |
+
|
83 |
+
|
84 |
+
def convert(token: str, model_id: str, filename: str, model_type: str, sample_size: int = 512, scheduler_type: str = "pndm", extract_ema: bool = True, progress=gr.Progress()):
|
85 |
+
api = HfApi()
|
86 |
+
|
87 |
+
pr_title = "Adding `diffusers` weights of this model"
|
88 |
+
|
89 |
+
with TemporaryDirectory() as d:
|
90 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
91 |
+
os.makedirs(folder)
|
92 |
+
new_pr = None
|
93 |
+
try:
|
94 |
+
folder = convert_single(model_id, token, filename, model_type, sample_size, scheduler_type, extract_ema, folder, progress)
|
95 |
+
progress(0.7, desc="Uploading to Hub")
|
96 |
+
new_pr = api.upload_folder(folder_path=folder, path_in_repo="./", repo_id=model_id, repo_type="model", token=token, commit_message=pr_title, commit_description=COMMIT_MESSAGE.format(model_id), create_pr=True)
|
97 |
+
pr_number = new_pr.split("%2F")[-1].split("/")[0]
|
98 |
+
link = f"Pr created at: {'https://huggingface.co/' + os.path.join(model_id, 'discussions', pr_number)}"
|
99 |
+
progress(1, desc="Done")
|
100 |
+
except Exception as e:
|
101 |
+
raise gr.exceptions.Error(str(e))
|
102 |
+
finally:
|
103 |
+
shutil.rmtree(folder)
|
104 |
+
|
105 |
+
return link
|