File size: 7,312 Bytes
5305e57
599d7c0
a47572b
 
 
 
 
0138b3c
a47572b
 
 
 
 
 
 
 
 
5305e57
 
 
a47572b
 
 
 
 
 
 
bc279d8
a47572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5305e57
599d7c0
 
a47572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599d7c0
a083f02
8cd9a28
49cbbe1
a4b58ab
bc279d8
 
 
 
 
 
 
 
 
 
 
8cd9a28
dde5e28
bc279d8
 
dde5e28
 
 
599d7c0
a47572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc279d8
a47572b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599d7c0
a47572b
599d7c0
a47572b
599d7c0
 
a47572b
599d7c0
a47572b
599d7c0
 
a47572b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from openai import OpenAI
from datetime import datetime
import gradio as gr
import time

# --- Constants ---
DEFAULT_MODEL = "gpt-4.1"  # Assuming gpt-4o is a good default
DEFAULT_TEMPERATURE = 1.0 # Match your example
DEFAULT_TOP_P = 1.0       # Match your example
DEFAULT_FREQ_PENALTY = 0  # Match your example
DEFAULT_PRES_PENALTY = 0  # Match your example
MAX_TOKENS = 2048       # Match your example
MAX_HISTORY_LENGTH = 5

# --- API Key and Client Initialization ---
import openai
API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=API_KEY)

# --- Helper Functions ---
def get_openai_response(prompt, model=DEFAULT_MODEL, temperature=DEFAULT_TEMPERATURE, top_p=DEFAULT_TOP_P,
                        frequency_penalty=DEFAULT_FREQ_PENALTY, presence_penalty=DEFAULT_PRES_PENALTY,
                        max_tokens=MAX_TOKENS, system_prompt="", chat_history=None):
    """Gets a response from the OpenAI API, handling errors and streaming."""
    today_day = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    try:
        messages = [{"role": "system", "content": f"Todays date is: {today_day} " + system_prompt}]
        if chat_history:
            for turn in chat_history:
                messages.append({"role": "user", "content": turn[0]})
                messages.append({"role": "assistant", "content": turn[1]})
        messages.append({"role": "user", "content": prompt})

        response = client.chat.completions.create(
            model=model,
            messages=messages,
            temperature=temperature,
            max_tokens=max_tokens, #Use the new name
            top_p=top_p,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
            response_format={"type": "text"},  # As per your example
            stream=True  # Enable streaming!
        )

        collected_messages = []
        for chunk in response:
            chunk_message = chunk.choices[0].delta.content
            if chunk_message is not None:
                collected_messages.append(chunk_message)
            full_reply_content = ''.join(collected_messages)
            yield full_reply_content

    except openai.APIConnectionError as e:
        return f"Error: Could not connect to OpenAI API: {e}"
    except openai.RateLimitError as e:
        return f"Error: Rate limit exceeded: {e}"
    except openai.APIStatusError as e:
        return f"Error: OpenAI API returned an error: {e}"
    except Exception as e:
        return f"An unexpected error occurred: {e}"



def update_ui(message, chat_history, model, temperature, top_p, frequency_penalty, presence_penalty, system_prompt, history_length):
    """Updates the Gradio UI; handles streaming response."""
    bot_message_gen = get_openai_response(
        prompt=message, model=model, temperature=temperature, top_p=top_p,
        frequency_penalty=frequency_penalty, presence_penalty=presence_penalty,
        system_prompt=system_prompt, chat_history=chat_history
    )
    chat_history.append((message, ""))
    for bot_message in bot_message_gen:
        chat_history[-1] = (chat_history[-1][0], bot_message)
        visible_history = chat_history[-history_length:]
        time.sleep(0.025) #Rate limiter
        yield "", visible_history

# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Chat with GPT-4.5 -> gpt-4.5-preview-2025-02-27 model")
    gr.Markdown("❗⚠️IMPORTANT:!!! GPT 4.5 IS NO LONGER WORKING ON THIS SPACE, IT WAS FREE FOR ~ 4 HOURS! 02/27/2025| Made by: [@diegocabezas01](https://x.com/diegocabezas01) on X")
    gr.Markdown("☕ [Buy me a Coffee](https://buymeacoffee.com/diegocp01m)")
    gr.Markdown("---")
    gr.Markdown("""
    🚀 **GPT-4.5 EXPERIMENT:** GPT-4.5 was released today at 3 PM ET, but it's only available to PRO users and developers. 
    I created a Hugging Face Space using the API so everyone can chat with GPT-4.5 for FREE—until my credits run out! 😄
    
    **Here's how the experiment went:**
    
    📊 **Chat Completions Metrics (Feb 27, 2025):**
    - 111 requests
    - 64,764 Total tokens processed
    - Total spend: $10.99
    
    This space went live at 4:23 PM ET, Feb 27, 2025 until 8:53 PM ET. [Read More](https://x.com/diegocabezas01/status/1895291365376041045)
    Results from OpenAI platform: 👇
    """)

    gr.Image("https://pbs.twimg.com/media/Gk1tVnRXkAASa2U?format=jpg&name=4096x4096", elem_id="gpt4_5_image")
    gr.Markdown("Chat for Free with GPT 4o mini here: 👇")
    
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                show_label=False,
                avatar_images=(
                    "https://cdn-icons-png.flaticon.com/512/8428/8428718.png",  # User image URL
                    "https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/ChatGPT-Logo.svg/640px-ChatGPT-Logo.svg.png"  # OpenAI image URL
                ),
                render_markdown=True,
                height=500
            )
            msg = gr.Textbox(placeholder="Type your message here...", scale=4, show_label=False)

            with gr.Accordion("Advanced Options", open=False):
                model_select = gr.Dropdown(
                    label="Model",
                    choices=["gpt-3.5-turbo-0125", "gpt-4o-mini-2024-07-18"],  # Update with your models
                    value=DEFAULT_MODEL,
                    interactive=True
                )
                temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, value=DEFAULT_TEMPERATURE, step=0.1, interactive=True)
                top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=DEFAULT_TOP_P, step=0.05, interactive=True)
                frequency_penalty_slider = gr.Slider(label="Frequency Penalty", minimum=-2.0, maximum=2.0, value=DEFAULT_FREQ_PENALTY, step=0.1, interactive=True)
                presence_penalty_slider = gr.Slider(label="Presence Penalty", minimum=-2.0, maximum=2.0, value=DEFAULT_PRES_PENALTY, step=0.1, interactive=True)
                system_prompt_textbox = gr.Textbox(label="System Prompt", placeholder="Enter a custom system prompt...", lines=3, interactive=True)
                history_length_slider = gr.Slider(label="Chat History Length", minimum=1, maximum=20, value=MAX_HISTORY_LENGTH, step=1, interactive=True)


            with gr.Row():
                send = gr.Button("Send")
                clear = gr.Button("Clear")

    # --- Event Handlers ---
    send_event = send.click(
        update_ui,
        [msg, chatbot, model_select, temperature_slider, top_p_slider, frequency_penalty_slider, presence_penalty_slider, system_prompt_textbox, history_length_slider],
        [msg, chatbot]
    )
    msg.submit(
        update_ui,
        [msg, chatbot, model_select, temperature_slider, top_p_slider, frequency_penalty_slider, presence_penalty_slider, system_prompt_textbox, history_length_slider],
        [msg, chatbot]
    )
    clear.click(lambda: None, None, chatbot, queue=False)

    gr.Examples(
        examples=["Tell me about quantum computing", "Write a short poem about AI", "How can I improve my Python skills?"],
        inputs=msg
    )
    msg.focus()

# --- Launch ---
if __name__ == "__main__":
    demo.launch()