Spaces:
Sleeping
Sleeping
Sumit Kumar
commited on
Commit
·
2937f6c
1
Parent(s):
1175fd3
Add captcha resolution functionality and update requirements
Browse files- Implement `resolve_captcha` function in `captcha.py` to decode images and extract text using a pre-trained model.
- Add new endpoint `/resolve_captcha` in `app.py` for handling captcha resolution requests.
- Update `requirements.txt` to include necessary dependencies for image processing and model inference.
- Create `.gitignore` file to exclude `__pycache__` from version control.
- .gitignore +1 -0
- app.py +21 -1
- captcha.py +38 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
CHANGED
@@ -1,7 +1,14 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
return {"Hello": "World!"}
|
@@ -9,4 +16,17 @@ def greet_json():
|
|
9 |
|
10 |
@app.get("/greet/{name}")
|
11 |
def greet_name(name: str):
|
12 |
-
return {"Hello": name}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from captcha import resolve_captcha
|
3 |
+
from pydantic import BaseModel
|
4 |
|
5 |
app = FastAPI()
|
6 |
|
7 |
+
|
8 |
+
class Item(BaseModel):
|
9 |
+
image_path: str
|
10 |
+
|
11 |
+
|
12 |
@app.get("/")
|
13 |
def greet_json():
|
14 |
return {"Hello": "World!"}
|
|
|
16 |
|
17 |
@app.get("/greet/{name}")
|
18 |
def greet_name(name: str):
|
19 |
+
return {"Hello": name}
|
20 |
+
|
21 |
+
|
22 |
+
@app.post("/resolve_captcha")
|
23 |
+
def decode_captcha(item: Item):
|
24 |
+
"""
|
25 |
+
Decode the captcha image and return the text.
|
26 |
+
"""
|
27 |
+
try:
|
28 |
+
result = resolve_captcha(item.image_path)
|
29 |
+
return {"captcha_text": result}
|
30 |
+
except Exception as e:
|
31 |
+
return {"error": str(e)}
|
32 |
+
|
captcha.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
3 |
+
|
4 |
+
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
+
import base64
|
8 |
+
|
9 |
+
# Load model and processor
|
10 |
+
processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-v3", use_fast=True)
|
11 |
+
model = VisionEncoderDecoderModel.from_pretrained(
|
12 |
+
"anuashok/ocr-captcha-v3")
|
13 |
+
|
14 |
+
def resolve_captcha(image_path):
|
15 |
+
# Check if input is base64 string
|
16 |
+
if isinstance(image_path, str) and image_path.startswith('data:image'):
|
17 |
+
# Extract the base64 data after the comma
|
18 |
+
base64_data = image_path.split(',')[1]
|
19 |
+
# Decode base64 to bytes
|
20 |
+
image_bytes = base64.b64decode(base64_data)
|
21 |
+
# Create PIL Image from bytes
|
22 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGBA")
|
23 |
+
else:
|
24 |
+
# Handle as regular file path
|
25 |
+
image = Image.open(image_path).convert("RGBA")
|
26 |
+
|
27 |
+
background = Image.new("RGBA", image.size, (255, 255, 255))
|
28 |
+
combined = Image.alpha_composite(background, image).convert("RGB")
|
29 |
+
|
30 |
+
# Prepare image for the model
|
31 |
+
pixel_values = processor(combined, return_tensors="pt").pixel_values
|
32 |
+
|
33 |
+
# Generate text
|
34 |
+
generated_ids = model.generate(pixel_values)
|
35 |
+
generated_text = processor.batch_decode(
|
36 |
+
generated_ids, skip_special_tokens=True)[0]
|
37 |
+
|
38 |
+
return generated_text
|
requirements.txt
CHANGED
@@ -1,2 +1,7 @@
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
|
|
|
|
|
|
|
|
|
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
3 |
+
transformers
|
4 |
+
pillow
|
5 |
+
tensorflow
|
6 |
+
torch
|
7 |
+
torchvision
|