import streamlit as st import torch from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7} ind_to_target = {ind: target for target, ind in target_to_ind.items()} @st.cache_resource def load_model_and_tokenizer(): model_name = 'distilbert/distilbert-base-cased' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained("./model.safetensors", num_labels=len(target_to_ind)) return model, tokenizer def get_predict(title: str, abstract: str) -> (str, float, dict): tokenized_text = tokenizer(title + tokenizer.sep_token + abstact[:128], padding="max_length", truncation=True) with torch.no_grad(): outputs = model(tokenized_text) probs = torch.nn.functional.softmax(out.logits, dim=-1) return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)], reversed=True)) title = st.text_area("Title ", "", height=100) abstract = st.text_area("Abstract ", "", height=150) if st.button("Классифицировать", key="manual"): if len(title_text) == 0: st.error("Please, provide paper's title") else: with st.spinner("Be patient, I'm doing my best"): predict = get_predict(title, abstract) st.success(f"Предсказанный тэг: **{predict[0][1]}**") model, tokenizer = load_model_and_tokenizer()