dfedukov commited on
Commit
c2d61c7
·
verified ·
1 Parent(s): f1fb568

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -6
app.py CHANGED
@@ -4,6 +4,8 @@ from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassific
4
  from safetensors.torch import load_file as safe_load
5
 
6
  target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7}
 
 
7
  ind_to_target = {ind: target for target, ind in target_to_ind.items()}
8
 
9
 
@@ -42,14 +44,24 @@ def get_predict(title: str, abstract: str) -> (str, float, dict):
42
  title = st.text_area("Title ", "", height=100)
43
  abstract = st.text_area("Abstract ", "", height=150)
44
 
45
- if st.button("Классифицировать", key="manual"):
 
 
 
46
  if len(title) == 0:
47
  st.error("Please, provide paper's title")
48
  else:
49
  with st.spinner("Be patient, I'm doing my best"):
50
  predict = get_predict(title, abstract)
51
-
52
- st.success(f"Предсказанный тэг: **{predict[0][1]}**")
53
-
54
-
55
- model, tokenizer = load_model_and_tokenizer()
 
 
 
 
 
 
 
 
4
  from safetensors.torch import load_file as safe_load
5
 
6
  target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7}
7
+ target_to_label = {'cs': 'Computer Science', 'econ': 'Economics', 'eess': 'Electrical Engineering and Systems Science', 'math': 'Mathematics', 'phys': 'Physics',
8
+ 'q-bio': 'Quantitative Biology', 'q-fin': 'Quantitative Finance', 'stat': 'Statistics'}
9
  ind_to_target = {ind: target for target, ind in target_to_ind.items()}
10
 
11
 
 
44
  title = st.text_area("Title ", "", height=100)
45
  abstract = st.text_area("Abstract ", "", height=150)
46
 
47
+
48
+ mode = st.radio("Mode: ", ("Best prediction", "Top 95%"))
49
+
50
+ if st.button("Get prediction", key="manual"):
51
  if len(title) == 0:
52
  st.error("Please, provide paper's title")
53
  else:
54
  with st.spinner("Be patient, I'm doing my best"):
55
  predict = get_predict(title, abstract)
56
+
57
+ tags = []
58
+ threshold = 0 if status == "Best prediction" else 0.95
59
+ sum_p = 0
60
+ for p, tag in predict:
61
+ sum_p += p
62
+ tags.append(target_to_label[tag])
63
+
64
+ if sum_p >= threshold:
65
+ break
66
+
67
+ st.succes(f"{'\n'.join(tags)}")