import gradio as gr import numpy as np import random # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch from typing import Optional device = "cuda" if torch.cuda.is_available() else "cpu" model_id_default = "CompVis/stable-diffusion-v1-4" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype) pipe_default = pipe_default.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt: str, negative_prompt: str, width: int, height: int, num_inference_steps: int, model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4', seed: Optional[int] = 42, guidance_scale: Optional[float] = 7.0, progress=gr.Progress(track_tqdm=True), ): generator = torch.Generator().manual_seed(seed) params = { 'prompt': prompt, 'negative_prompt': negative_prompt, 'guidance_scale': guidance_scale, 'num_inference_steps': num_inference_steps, 'width': width, 'height': height, 'generator': generator, } if model_id != model_id_default: pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) pipe = pipe.to(device) image = pipe(**params).images[0] else: image = pipe_default(**params).images[0] return image css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # DEMO Text-to-Image") with gr.Row(): model_id = gr.Textbox( label="Model ID", max_lines=1, placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'", value="CompVis/stable-diffusion-v1-4" ) prompt = gr.Textbox( label="Prompt", max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) with gr.Row(): seed = gr.Number( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, ) with gr.Accordion("Optional Settings", open=False): with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, ) run_button = gr.Button("Run", scale=1, variant="primary") result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, width, height, num_inference_steps, model_id, seed, guidance_scale, ], outputs=[result], ) if __name__ == "__main__": demo.launch()