import gradio as gr import numpy as np import torch from diffusers import StableDiffusionPipeline from peft import PeftModel, LoraConfig import os def get_lora_sd_pipeline( ckpt_dir='./lora_logos', base_model_name_or_path=None, dtype=torch.float16, adapter_name="default" ): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraConfig.from_pretrained(text_encoder_sub_dir) base_model_name_or_path = config.base_model_name_or_path if base_model_name_or_path is None: raise ValueError("Please specify the base model name or path") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype) before_params = pipe.unet.parameters() pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) pipe.fuse_lora(lora_scale=0.5) after_params = pipe.unet.parameters() print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params))) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() return pipe def process_prompt(prompt, tokenizer, text_encoder, max_length=77): tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"] chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)] with torch.no_grad(): embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks] return torch.cat(embeds, dim=1) def align_embeddings(prompt_embeds, negative_prompt_embeds): max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \ torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1])) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id_default = "CompVis/stable-diffusion-v1-4" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 pipe_default = get_lora_sd_pipeline(ckpt_dir='./lora_logos', base_model_name_or_path=model_id_default, dtype=torch_dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer( prompt, negative_prompt, width=512, height=512, num_inference_steps=20, model_id='CompVis/stable-diffusion-v1-4', seed=42, guidance_scale=7.0, lora_scale=0.5 ): generator = torch.Generator(device).manual_seed(seed) if model_id != model_id_default: pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder) negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder) prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) else: pipe = pipe_default prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder) negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder) prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) print(f"LoRA adapter loaded: {pipe.unet.active_adapters}") print(f"LoRA scale applied: {lora_scale}") pipe.fuse_lora(lora_scale=lora_scale) params = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'guidance_scale': guidance_scale, 'num_inference_steps': num_inference_steps, 'width': width, 'height': height, 'generator': generator, } return pipe(**params).images[0] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # DEMO Text-to-Image") with gr.Row(): model_id = gr.Textbox( label="Model ID", max_lines=1, placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'", value=model_id_default ) prompt = gr.Textbox( label="Prompt", max_lines=1, placeholder="Enter your prompt", ) negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) with gr.Row(): seed = gr.Number( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, ) with gr.Row(): lora_scale = gr.Slider( label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=0.5, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, ) with gr.Accordion("Optional Settings", open=False): with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) run_button = gr.Button("Run", scale=1, variant="primary") result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, width, height, num_inference_steps, model_id, seed, guidance_scale, lora_scale, ], outputs=[result], ) if __name__ == "__main__": demo.launch()