import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer import numpy as np # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate target from predictors y = train_data.SalePrice X = train_data.drop(["SalePrice"], axis=1) # Preprocessing for numerical data numerical_transformer = SimpleImputer(strategy="median") # Preprocessing for categorical data categorical_transformer = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="most_frequent")), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) # Bundle preprocessing for numerical and categorical data preprocessor = ColumnTransformer( transformers=[ ("num", numerical_transformer, X.select_dtypes(exclude=["object"]).columns), ("cat", categorical_transformer, X.select_dtypes(include=["object"]).columns), ] ) # Define the model model = GradientBoostingRegressor() # Bundle preprocessing and modeling code in a pipeline my_pipeline = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) # Split data into training and validation subsets X_train, X_valid, y_train, y_valid = train_test_split( X, y, train_size=0.8, test_size=0.2, random_state=0 ) # Preprocessing of training data, fit model my_pipeline.fit(X_train, np.log(y_train)) # Preprocessing of validation data, get predictions preds = my_pipeline.predict(X_valid) # Evaluate the model score = mean_squared_error(np.log(y_valid), preds, squared=False) print("RMSE:", score) # Preprocessing of test data, fit model test_preds = my_pipeline.predict(test_data) # Save test predictions to file output = pd.DataFrame({"Id": test_data.Id, "SalePrice": np.exp(test_preds)}) output.to_csv("./working/submission.csv", index=False)