import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from lightgbm import LGBMClassifier # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Separate features and target X = train_data.drop(columns=["id", "claim"]) y = train_data["claim"] # Handle missing values by imputing with median X.fillna(X.median(), inplace=True) test_data.fillna(test_data.median(), inplace=True) # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize the LightGBM model model = LGBMClassifier(random_state=42) # Train the model model.fit(X_train, y_train) # Predict on the validation set val_predictions = model.predict_proba(X_val)[:, 1] # Calculate the ROC AUC score val_auc = roc_auc_score(y_val, val_predictions) print(f"Validation ROC AUC Score: {val_auc}") # Predict on the test set test_predictions = model.predict_proba(test_data.drop(columns=["id"]))[:, 1] # Create the submission file submission = pd.DataFrame({"id": test_data["id"], "claim": test_predictions}) submission.to_csv("./working/submission.csv", index=False)