import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Split the data into features and target X = train_data.drop(["id", "target"], axis=1) y = train_data["target"] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize and fit the Gradient Boosting Regressor model = GradientBoostingRegressor(random_state=42) model.fit(X_train, y_train) # Predict on the validation set and calculate RMSE y_pred_val = model.predict(X_val) rmse = mean_squared_error(y_val, y_pred_val, squared=False) print(f"Validation RMSE: {rmse}") # Predict on the test set test_features = test_data.drop("id", axis=1) test_predictions = model.predict(test_features) # Save the predictions to a CSV file submission = pd.DataFrame({"id": test_data["id"], "target": test_predictions}) submission.to_csv("./working/submission.csv", index=False)