import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Preprocess the data features = train_data.columns.drop(["id", "failure"]) X = train_data[features] y = train_data["failure"] X_test = test_data[features] # Fill missing values with median for numerical columns num_cols = X.select_dtypes(exclude="object").columns imputer = SimpleImputer(strategy="median") X[num_cols] = imputer.fit_transform(X[num_cols]) X_test[num_cols] = imputer.transform(X_test[num_cols]) # One-hot encode categorical features cat_cols = X.select_dtypes(include="object").columns encoder = OneHotEncoder(handle_unknown="ignore", sparse=False) X_encoded = pd.DataFrame( encoder.fit_transform(X[cat_cols]), columns=encoder.get_feature_names_out(cat_cols) ) X_test_encoded = pd.DataFrame( encoder.transform(X_test[cat_cols]), columns=encoder.get_feature_names_out(cat_cols) ) # One-hot encoding removed index; put it back X_encoded.index = X.index X_test_encoded.index = X_test.index # Remove categorical columns (will replace with one-hot encoding) num_X = X.drop(cat_cols, axis=1) num_X_test = X_test.drop(cat_cols, axis=1) # Add one-hot encoded columns to numerical features X_preprocessed = pd.concat([num_X, X_encoded], axis=1) X_test_preprocessed = pd.concat([num_X_test, X_test_encoded], axis=1) # Convert all feature names to strings to avoid TypeError X_preprocessed.columns = X_preprocessed.columns.astype(str) X_test_preprocessed.columns = X_test_preprocessed.columns.astype(str) # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split( X_preprocessed, y, test_size=0.2, random_state=0 ) # Train the Logistic Regression model model = LogisticRegression(max_iter=1000) model.fit(X_train, y_train) # Evaluate the model val_predictions = model.predict_proba(X_val)[:, 1] val_auc = roc_auc_score(y_val, val_predictions) print(f"Validation ROC AUC Score: {val_auc}") # Predict on test data test_predictions = model.predict_proba(X_test_preprocessed)[:, 1] # Save the predictions to a CSV file output = pd.DataFrame({"id": test_data.id, "failure": test_predictions}) output.to_csv("./working/submission.csv", index=False)