import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score # Load the data train_data = pd.read_csv("./input/train.csv") # Prepare the features and labels X = train_data["comment_text"] y = train_data.iloc[:, 2:] # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) # Create TF-IDF features tfidf_vectorizer = TfidfVectorizer(max_features=10000, stop_words="english") X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_val_tfidf = tfidf_vectorizer.transform(X_val) # Train a logistic regression model for each label scores = [] for label in y.columns: lr = LogisticRegression(C=1.0, solver="liblinear") lr.fit(X_train_tfidf, y_train[label]) y_pred = lr.predict_proba(X_val_tfidf)[:, 1] score = roc_auc_score(y_val[label], y_pred) scores.append(score) print(f"ROC AUC for {label}: {score}") # Calculate the mean column-wise ROC AUC mean_auc = sum(scores) / len(scores) print(f"Mean column-wise ROC AUC: {mean_auc}")