import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import LabelEncoder # Load the data train_data = pd.read_csv("./input/train.csv") test_data = pd.read_csv("./input/test.csv") # Prepare the data X = train_data.drop(["id", "prognosis"], axis=1) y = train_data["prognosis"] X_test = test_data.drop(["id"], axis=1) test_ids = test_data["id"] # Encode the target variable label_encoder = LabelEncoder() y_encoded = label_encoder.fit_transform(y) # Split the data into training and validation sets X_train, X_val, y_train, y_val = train_test_split( X, y_encoded, test_size=0.2, random_state=42 ) # Train the model model = OneVsRestClassifier(RandomForestClassifier(n_estimators=100, random_state=42)) model.fit(X_train, y_train) # Predict on the validation set y_val_pred_proba = model.predict_proba(X_val) # Select the top 3 predictions for each sample top3_preds = pd.DataFrame(y_val_pred_proba).apply( lambda x: label_encoder.inverse_transform(x.argsort()[-3:][::-1]), axis=1 ) # Evaluate the model using MPA@3 def mpa_at_k(y_true, y_pred, k=3): score = 0.0 for true, pred in zip(y_true, y_pred): try: index = list(pred).index(true) score += 1.0 / (index + 1) except ValueError: continue return score / len(y_true) # Calculate the MPA@3 score y_val_true = label_encoder.inverse_transform(y_val) mpa_score = mpa_at_k(y_val_true, top3_preds) print(f"MPA@3 score on the validation set: {mpa_score}") # Predict on the test set y_test_pred_proba = model.predict_proba(X_test) top3_test_preds = pd.DataFrame(y_test_pred_proba).apply( lambda x: label_encoder.inverse_transform(x.argsort()[-3:][::-1]), axis=1 ) # Prepare the submission file submission = pd.DataFrame( { "id": test_ids, "prognosis": [" ".join(map(str, preds)) for preds in top3_test_preds], } ) submission.to_csv("./working/submission.csv", index=False)