Zhengyao Jiang commited on
Commit
eff469b
·
unverified ·
1 Parent(s): 113f409

Update README.md include WebUI video demo

Browse files
Files changed (1) hide show
  1. README.md +56 -51
README.md CHANGED
@@ -21,7 +21,62 @@ More specifically, AIDE has the following features:
21
 
22
  # How to Use AIDE?
23
 
24
- ## Setup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  Make sure you have `Python>=3.10` installed and run:
27
 
@@ -39,8 +94,6 @@ export OPENAI_API_KEY=<your API key>
39
  export ANTHROPIC_API_KEY=<your API key>
40
  ```
41
 
42
- ## Running AIDE via the Command Line
43
-
44
  To run AIDE:
45
 
46
  ```bash
@@ -108,54 +161,6 @@ AIDE supports using local LLMs through OpenAI-compatible APIs. Here's how to set
108
  eval="Use the RMSE metric between the logarithm of the predicted and observed values."
109
  ```
110
 
111
- ## Running AIDE via the Web UI
112
-
113
- We have developed a user-friendly Web UI using Streamlit to make it even easier to interact with AIDE.
114
-
115
- ### Prerequisites
116
-
117
- Ensure you have installed the development version of AIDE and its dependencies as described in the [Development](#development) section.
118
-
119
- ### Running the Web UI
120
-
121
- Navigate to the `aide/webui` directory and run the Streamlit application:
122
-
123
- ```bash
124
- cd aide/webui
125
- streamlit run app.py
126
- ```
127
-
128
- Alternatively, you can run it from the root directory:
129
-
130
- ```bash
131
- streamlit run aide/webui/app.py
132
- ```
133
-
134
- ### Using the Web UI
135
-
136
- 1. **API Key Configuration**: In the sidebar, input your OpenAI API key or Anthropic API key and click "Save API Keys".
137
-
138
- 2. **Input Data**:
139
- - You can either **upload your dataset files** (`.csv`, `.txt`, `.json`, `.md`) using the "Upload Data Files" feature.
140
- - Or click on "Load Example Experiment" to use the example house prices dataset.
141
-
142
- 3. **Define Goal and Evaluation Criteria**:
143
- - In the "Goal" text area, describe what you want the model to achieve (e.g., "Predict the sales price for each house").
144
- - In the "Evaluation Criteria" text area, specify the evaluation metric (e.g., "Use the RMSE metric between the logarithm of the predicted and observed values.").
145
-
146
- 4. **Configure Steps**:
147
- - Use the slider to set the number of steps (iterations) for the experiment.
148
-
149
- 5. **Run the Experiment**:
150
- - Click on "Run AIDE" to start the experiment.
151
- - Progress and status updates will be displayed in the "Results" section.
152
-
153
- 6. **View Results**:
154
- - **Tree Visualization**: Explore the solution tree to understand how AIDE experimented and optimized the models.
155
- - **Best Solution**: View the Python code of the best solution found.
156
- - **Config**: Review the configuration used for the experiment.
157
- - **Journal**: Examine the detailed journal entries for each step.
158
-
159
  ## Using AIDE in Python
160
 
161
  Using AIDE within your Python script/project is easy. Follow the setup steps above, and then create an AIDE experiment like below and start running:
 
21
 
22
  # How to Use AIDE?
23
 
24
+ ## Running AIDE via the Web UI
25
+
26
+
27
+ https://github.com/user-attachments/assets/1da42853-fe36-45e1-b6a2-852f88470af6
28
+
29
+
30
+ We have developed a user-friendly Web UI using Streamlit to make it even easier to interact with AIDE.
31
+
32
+ ### Prerequisites
33
+
34
+ Ensure you have installed the development version of AIDE and its dependencies as described in the [Development](#development) section.
35
+
36
+ ### Running the Web UI
37
+
38
+ Navigate to the `aide/webui` directory and run the Streamlit application:
39
+
40
+ ```bash
41
+ cd aide/webui
42
+ streamlit run app.py
43
+ ```
44
+
45
+ Alternatively, you can run it from the root directory:
46
+
47
+ ```bash
48
+ streamlit run aide/webui/app.py
49
+ ```
50
+
51
+ ### Using the Web UI
52
+
53
+ 1. **API Key Configuration**: In the sidebar, input your OpenAI API key or Anthropic API key and click "Save API Keys".
54
+
55
+ 2. **Input Data**:
56
+ - You can either **upload your dataset files** (`.csv`, `.txt`, `.json`, `.md`) using the "Upload Data Files" feature.
57
+ - Or click on "Load Example Experiment" to use the example house prices dataset.
58
+
59
+ 3. **Define Goal and Evaluation Criteria**:
60
+ - In the "Goal" text area, describe what you want the model to achieve (e.g., "Predict the sales price for each house").
61
+ - In the "Evaluation Criteria" text area, specify the evaluation metric (e.g., "Use the RMSE metric between the logarithm of the predicted and observed values.").
62
+
63
+ 4. **Configure Steps**:
64
+ - Use the slider to set the number of steps (iterations) for the experiment.
65
+
66
+ 5. **Run the Experiment**:
67
+ - Click on "Run AIDE" to start the experiment.
68
+ - Progress and status updates will be displayed in the "Results" section.
69
+
70
+ 6. **View Results**:
71
+ - **Tree Visualization**: Explore the solution tree to understand how AIDE experimented and optimized the models.
72
+ - **Best Solution**: View the Python code of the best solution found.
73
+ - **Config**: Review the configuration used for the experiment.
74
+ - **Journal**: Examine the detailed journal entries for each step.
75
+
76
+
77
+ ## Running AIDE via the Command Line
78
+
79
+ ### Setup
80
 
81
  Make sure you have `Python>=3.10` installed and run:
82
 
 
94
  export ANTHROPIC_API_KEY=<your API key>
95
  ```
96
 
 
 
97
  To run AIDE:
98
 
99
  ```bash
 
161
  eval="Use the RMSE metric between the logarithm of the predicted and observed values."
162
  ```
163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  ## Using AIDE in Python
165
 
166
  Using AIDE within your Python script/project is easy. Follow the setup steps above, and then create an AIDE experiment like below and start running: