|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.metrics import roc_auc_score |
|
from sklearn.preprocessing import OneHotEncoder |
|
from sklearn.impute import SimpleImputer |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
features = train_data.columns.drop(["id", "failure"]) |
|
X = train_data[features] |
|
y = train_data["failure"] |
|
X_test = test_data[features] |
|
|
|
|
|
num_cols = X.select_dtypes(exclude="object").columns |
|
imputer = SimpleImputer(strategy="median") |
|
X[num_cols] = imputer.fit_transform(X[num_cols]) |
|
X_test[num_cols] = imputer.transform(X_test[num_cols]) |
|
|
|
|
|
cat_cols = X.select_dtypes(include="object").columns |
|
encoder = OneHotEncoder(handle_unknown="ignore", sparse=False) |
|
X_encoded = pd.DataFrame( |
|
encoder.fit_transform(X[cat_cols]), columns=encoder.get_feature_names_out(cat_cols) |
|
) |
|
X_test_encoded = pd.DataFrame( |
|
encoder.transform(X_test[cat_cols]), columns=encoder.get_feature_names_out(cat_cols) |
|
) |
|
|
|
|
|
X_encoded.index = X.index |
|
X_test_encoded.index = X_test.index |
|
|
|
|
|
num_X = X.drop(cat_cols, axis=1) |
|
num_X_test = X_test.drop(cat_cols, axis=1) |
|
|
|
|
|
X_preprocessed = pd.concat([num_X, X_encoded], axis=1) |
|
X_test_preprocessed = pd.concat([num_X_test, X_test_encoded], axis=1) |
|
|
|
|
|
X_preprocessed.columns = X_preprocessed.columns.astype(str) |
|
X_test_preprocessed.columns = X_test_preprocessed.columns.astype(str) |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split( |
|
X_preprocessed, y, test_size=0.2, random_state=0 |
|
) |
|
|
|
|
|
model = LogisticRegression(max_iter=1000) |
|
model.fit(X_train, y_train) |
|
|
|
|
|
val_predictions = model.predict_proba(X_val)[:, 1] |
|
val_auc = roc_auc_score(y_val, val_predictions) |
|
print(f"Validation ROC AUC Score: {val_auc}") |
|
|
|
|
|
test_predictions = model.predict_proba(X_test_preprocessed)[:, 1] |
|
|
|
|
|
output = pd.DataFrame({"id": test_data.id, "failure": test_predictions}) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|