|
import pandas as pd |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.model_selection import cross_val_score |
|
from sklearn.impute import SimpleImputer |
|
from sklearn.preprocessing import OneHotEncoder |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.pipeline import Pipeline |
|
|
|
|
|
train_data = pd.read_csv("./input/train.csv") |
|
test_data = pd.read_csv("./input/test.csv") |
|
|
|
|
|
X = train_data.drop(["Survived", "PassengerId", "Name", "Ticket", "Cabin"], axis=1) |
|
y = train_data["Survived"] |
|
|
|
|
|
numerical_transformer = SimpleImputer(strategy="median") |
|
|
|
|
|
categorical_cols = [cname for cname in X.columns if X[cname].dtype == "object"] |
|
categorical_transformer = Pipeline( |
|
steps=[ |
|
("imputer", SimpleImputer(strategy="most_frequent")), |
|
("onehot", OneHotEncoder(handle_unknown="ignore")), |
|
] |
|
) |
|
|
|
|
|
preprocessor = ColumnTransformer( |
|
transformers=[ |
|
("num", numerical_transformer, ["Age", "Fare"]), |
|
("cat", categorical_transformer, categorical_cols), |
|
] |
|
) |
|
|
|
|
|
model = RandomForestClassifier(n_estimators=100, random_state=0) |
|
|
|
|
|
clf = Pipeline(steps=[("preprocessor", preprocessor), ("model", model)]) |
|
|
|
|
|
scores = cross_val_score(clf, X, y, cv=10, scoring="accuracy") |
|
print(f"Average cross-validation score: {scores.mean():.4f}") |
|
|
|
|
|
clf.fit(X, y) |
|
test_X = test_data.drop(["PassengerId", "Name", "Ticket", "Cabin"], axis=1) |
|
test_preds = clf.predict(test_X) |
|
|
|
|
|
output = pd.DataFrame({"PassengerId": test_data.PassengerId, "Survived": test_preds}) |
|
output.to_csv("./working/submission.csv", index=False) |
|
|