|
import pandas as pd |
|
from sklearn.ensemble import RandomForestRegressor |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.metrics import mean_squared_error |
|
from math import sqrt |
|
|
|
|
|
games = pd.read_csv("./input/games.csv") |
|
turns = pd.read_csv("./input/turns.csv") |
|
train = pd.read_csv("./input/train.csv") |
|
|
|
|
|
merged_data = pd.merge(train, games, on="game_id") |
|
merged_data = pd.merge( |
|
merged_data, |
|
turns.groupby("game_id").agg({"points": "sum"}).reset_index(), |
|
on="game_id", |
|
) |
|
|
|
|
|
X = merged_data[["game_duration_seconds", "winner", "points"]] |
|
y = merged_data["rating"] |
|
|
|
|
|
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = RandomForestRegressor(n_estimators=100, random_state=42) |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_val) |
|
|
|
|
|
rmse = sqrt(mean_squared_error(y_val, y_pred)) |
|
print(f"Validation RMSE: {rmse}") |
|
|
|
|
|
test = pd.read_csv("./input/test.csv") |
|
test_merged = pd.merge(test, games, on="game_id") |
|
test_merged = pd.merge( |
|
test_merged, |
|
turns.groupby("game_id").agg({"points": "sum"}).reset_index(), |
|
on="game_id", |
|
) |
|
X_test = test_merged[["game_duration_seconds", "winner", "points"]] |
|
|
|
|
|
test["rating"] = model.predict(X_test) |
|
|
|
|
|
test[["game_id", "rating"]].to_csv("./working/submission.csv", index=False) |
|
|